{"title":"生成关联函数的单调函数的特征","authors":"Chen Meng, Yun-Mao Zhang, Xue-ping Wang","doi":"arxiv-2409.02941","DOIUrl":null,"url":null,"abstract":"Associativity of a two-place function $T: [0,1]^2\\rightarrow [0,1]$ defined\nby $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\\infty]^2\\rightarrow[0,\\infty]$\nis an associative function, $f: [0,1]\\rightarrow [0,\\infty]$ is a monotone\nfunction which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\\in\n\\mbox{Ran}(f)$ or $f(x)\\neq f(y)$ for any $y\\neq x$ when $f(x^{+})\\notin\n\\mbox{Ran}(f)$ for all $x\\in[0,1]$ and $f^{(-1)}:[0,\\infty]\\rightarrow[0,1]$ is\na pseudo-inverse of $f$ depends only on properties of the range of $f$. The\nnecessary and sufficient conditions for the $T$ to be associative are presented\nby applying the properties of the monotone function $f$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characterizations of monotone functions which generate associative functions\",\"authors\":\"Chen Meng, Yun-Mao Zhang, Xue-ping Wang\",\"doi\":\"arxiv-2409.02941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Associativity of a two-place function $T: [0,1]^2\\\\rightarrow [0,1]$ defined\\nby $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\\\\infty]^2\\\\rightarrow[0,\\\\infty]$\\nis an associative function, $f: [0,1]\\\\rightarrow [0,\\\\infty]$ is a monotone\\nfunction which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\\\\in\\n\\\\mbox{Ran}(f)$ or $f(x)\\\\neq f(y)$ for any $y\\\\neq x$ when $f(x^{+})\\\\notin\\n\\\\mbox{Ran}(f)$ for all $x\\\\in[0,1]$ and $f^{(-1)}:[0,\\\\infty]\\\\rightarrow[0,1]$ is\\na pseudo-inverse of $f$ depends only on properties of the range of $f$. The\\nnecessary and sufficient conditions for the $T$ to be associative are presented\\nby applying the properties of the monotone function $f$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The characterizations of monotone functions which generate associative functions
Associativity of a two-place function $T: [0,1]^2\rightarrow [0,1]$ defined
by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\infty]^2\rightarrow[0,\infty]$
is an associative function, $f: [0,1]\rightarrow [0,\infty]$ is a monotone
function which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\in
\mbox{Ran}(f)$ or $f(x)\neq f(y)$ for any $y\neq x$ when $f(x^{+})\notin
\mbox{Ran}(f)$ for all $x\in[0,1]$ and $f^{(-1)}:[0,\infty]\rightarrow[0,1]$ is
a pseudo-inverse of $f$ depends only on properties of the range of $f$. The
necessary and sufficient conditions for the $T$ to be associative are presented
by applying the properties of the monotone function $f$.