通过拉曼努强主定理论有限梅林变换

Omprakash Atale
{"title":"通过拉曼努强主定理论有限梅林变换","authors":"Omprakash Atale","doi":"arxiv-2409.06304","DOIUrl":null,"url":null,"abstract":"This paper aims to show that by making use of Ramanujan's Master Theorem and\nthe properties of the lower incomplete gamma function, it is possible to\nconstruct a finite Mellin transform for the function $f(x)$ that has infinite\nseries expansions in positive integral powers of $x$. Some applications are\ndiscussed by evaluating certain definite integrals. The obtained solutions are\nalso compared with results from Mathematica to test the validity of the\ncalculations.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finite Mellin Transform via Ramanujan's Master Theorem\",\"authors\":\"Omprakash Atale\",\"doi\":\"arxiv-2409.06304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to show that by making use of Ramanujan's Master Theorem and\\nthe properties of the lower incomplete gamma function, it is possible to\\nconstruct a finite Mellin transform for the function $f(x)$ that has infinite\\nseries expansions in positive integral powers of $x$. Some applications are\\ndiscussed by evaluating certain definite integrals. The obtained solutions are\\nalso compared with results from Mathematica to test the validity of the\\ncalculations.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在说明,通过利用拉马努强的主定理和下不完全伽马函数的性质,可以为函数 $f(x)$ 构造一个有限梅林变换,该函数在 $x$ 的正积分幂中有无穷次展开。通过对某些定积分进行求值,讨论了一些应用。此外,还将得到的解与 Mathematica 的结果进行比较,以检验计算的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Finite Mellin Transform via Ramanujan's Master Theorem
This paper aims to show that by making use of Ramanujan's Master Theorem and the properties of the lower incomplete gamma function, it is possible to construct a finite Mellin transform for the function $f(x)$ that has infinite series expansions in positive integral powers of $x$. Some applications are discussed by evaluating certain definite integrals. The obtained solutions are also compared with results from Mathematica to test the validity of the calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信