与模数形式相关的傅里叶级数的梅林变换的函数方程

Omprakash Atale
{"title":"与模数形式相关的傅里叶级数的梅林变换的函数方程","authors":"Omprakash Atale","doi":"arxiv-2409.06254","DOIUrl":null,"url":null,"abstract":"Let $X_1(s)$ and $X_2(s)$ denote the Mellin transforms of $\\chi_{1}(x)$ and\n$\\chi_{2}(x)$, respectively. Ramanujan investigated the functions $\\chi_1(x)$\nand $\\chi_2(x)$ that satisfy the functional equation \\begin{equation*}\nX_{1}(s)X_2(1-s) = \\lambda^2, \\end{equation*} where $\\lambda$ is a constant\nindependent of $s$. Ramanujan concluded that elementary functions such as sine,\ncosine, and exponential functions, along with their reasonable combinations,\nare suitable candidates that satisfy this functional equation. Building upon\nthis work, we explore the functions $\\chi_1(x)$ and $\\chi_2(x)$ whose Mellin\ntransforms satisfy the more general functional equation \\begin{equation*}\n\\frac{X_1(s)}{X_2(k-s)} = \\sigma^2, \\end{equation*} where $k$ is an integer and\n$\\sigma$ is a constant independent of $s$. As a consequence, we show that the\nMellin transform of the Fourier series associated to certain Dirichlet series\nand modular forms satisfy the same functional equation.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional equation for Mellin transform of Fourier series associated with modular forms\",\"authors\":\"Omprakash Atale\",\"doi\":\"arxiv-2409.06254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X_1(s)$ and $X_2(s)$ denote the Mellin transforms of $\\\\chi_{1}(x)$ and\\n$\\\\chi_{2}(x)$, respectively. Ramanujan investigated the functions $\\\\chi_1(x)$\\nand $\\\\chi_2(x)$ that satisfy the functional equation \\\\begin{equation*}\\nX_{1}(s)X_2(1-s) = \\\\lambda^2, \\\\end{equation*} where $\\\\lambda$ is a constant\\nindependent of $s$. Ramanujan concluded that elementary functions such as sine,\\ncosine, and exponential functions, along with their reasonable combinations,\\nare suitable candidates that satisfy this functional equation. Building upon\\nthis work, we explore the functions $\\\\chi_1(x)$ and $\\\\chi_2(x)$ whose Mellin\\ntransforms satisfy the more general functional equation \\\\begin{equation*}\\n\\\\frac{X_1(s)}{X_2(k-s)} = \\\\sigma^2, \\\\end{equation*} where $k$ is an integer and\\n$\\\\sigma$ is a constant independent of $s$. As a consequence, we show that the\\nMellin transform of the Fourier series associated to certain Dirichlet series\\nand modular forms satisfy the same functional equation.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X_1(s)$ 和 $X_2(s)$ 分别表示 $\chi_{1}(x)$ 和 $\chi_{2}(x)$ 的梅林变换。Ramanujan 研究了满足函数方程 \begin{equation*}X_{1}(s)X_2(1-s) = \lambda^2, \end{equation*} 的函数 $\chi_1(x)$ 和 $\chi_2(x)$,其中 $\lambda$是与 $s$ 无关的常数。拉马努扬总结说,正弦、余弦和指数函数等初等函数,以及它们的合理组合,都是满足这个函数方程的合适候选函数。在这项工作的基础上,我们探索了函数 $\chi_1(x)$ 和 $\chi_2(x)$,它们的梅林特变换满足更一般的函数方程 \begin{equation*}\frac{X_1(s)}{X_2(k-s)} = \sigma^2, \end{equation*} 其中 $k$ 是整数,$\sigma$ 是与 $s$ 无关的常数。因此,我们证明与某些德里赫特级数和模数形式相关的傅里叶级数的梅林变换满足相同的函数方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional equation for Mellin transform of Fourier series associated with modular forms
Let $X_1(s)$ and $X_2(s)$ denote the Mellin transforms of $\chi_{1}(x)$ and $\chi_{2}(x)$, respectively. Ramanujan investigated the functions $\chi_1(x)$ and $\chi_2(x)$ that satisfy the functional equation \begin{equation*} X_{1}(s)X_2(1-s) = \lambda^2, \end{equation*} where $\lambda$ is a constant independent of $s$. Ramanujan concluded that elementary functions such as sine, cosine, and exponential functions, along with their reasonable combinations, are suitable candidates that satisfy this functional equation. Building upon this work, we explore the functions $\chi_1(x)$ and $\chi_2(x)$ whose Mellin transforms satisfy the more general functional equation \begin{equation*} \frac{X_1(s)}{X_2(k-s)} = \sigma^2, \end{equation*} where $k$ is an integer and $\sigma$ is a constant independent of $s$. As a consequence, we show that the Mellin transform of the Fourier series associated to certain Dirichlet series and modular forms satisfy the same functional equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信