{"title":"CAERS-CF:通过协同过滤增强卷积自动编码器的推荐功能","authors":"Amirhossein Ghadami, Thomas Tran","doi":"10.1007/s10115-024-02204-5","DOIUrl":null,"url":null,"abstract":"<p>Recommendation systems are crucial in boosting companies’ revenues by implementing various strategies to engage customers and encourage them to invest in products or services. Businesses constantly desire to enhance these systems through different approaches. One effective method involves using hybrid recommendation systems, known for their ability to create high-performance models. We introduce a hybrid recommendation system that leverages two types of recommendation systems: first, a novel deep learning-based recommendation system that utilizes users’ and items’ content data, and second, a traditional recommendation system that employs users’ past behaviour data. We introduce a novel deep learning-based recommendation system called convolutional autoencoder recommendation system (CAERS). It uses a convolutional autoencoder (CAE) to capture high-order meaningful relationships between users’ and items’ content information and decode them to predict ratings. Subsequently, we design a traditional model-based collaborative filtering recommendation system (CF) that leverages users’ past behaviour data, utilizing singular value decomposition (SVD). Finally, in the last step, we combine the two method’s predictions with linear regression. We determine the optimal weight for each prediction generated by the collaborative filtering and the deep learning-based recommendation system. Our main objective is to introduce a hybrid model called CAERS-CF that leverages the strengths of the two mentioned approaches. For experimental purposes, we utilize two movie datasets to showcase the performance of CAERS-CF. Our model outperforms each constituent model individually and other state-of-the-art deep learning or hybrid models. Across both datasets, the hybrid CAERS-CF model demonstrates an average RMSE improvement of approximately 3.70% and an average MAE improvement of approximately 5.96% compared to the next best models.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"15 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAERS-CF: enhancing convolutional autoencoder recommendations through collaborative filtering\",\"authors\":\"Amirhossein Ghadami, Thomas Tran\",\"doi\":\"10.1007/s10115-024-02204-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recommendation systems are crucial in boosting companies’ revenues by implementing various strategies to engage customers and encourage them to invest in products or services. Businesses constantly desire to enhance these systems through different approaches. One effective method involves using hybrid recommendation systems, known for their ability to create high-performance models. We introduce a hybrid recommendation system that leverages two types of recommendation systems: first, a novel deep learning-based recommendation system that utilizes users’ and items’ content data, and second, a traditional recommendation system that employs users’ past behaviour data. We introduce a novel deep learning-based recommendation system called convolutional autoencoder recommendation system (CAERS). It uses a convolutional autoencoder (CAE) to capture high-order meaningful relationships between users’ and items’ content information and decode them to predict ratings. Subsequently, we design a traditional model-based collaborative filtering recommendation system (CF) that leverages users’ past behaviour data, utilizing singular value decomposition (SVD). Finally, in the last step, we combine the two method’s predictions with linear regression. We determine the optimal weight for each prediction generated by the collaborative filtering and the deep learning-based recommendation system. Our main objective is to introduce a hybrid model called CAERS-CF that leverages the strengths of the two mentioned approaches. For experimental purposes, we utilize two movie datasets to showcase the performance of CAERS-CF. Our model outperforms each constituent model individually and other state-of-the-art deep learning or hybrid models. Across both datasets, the hybrid CAERS-CF model demonstrates an average RMSE improvement of approximately 3.70% and an average MAE improvement of approximately 5.96% compared to the next best models.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02204-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02204-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
CAERS-CF: enhancing convolutional autoencoder recommendations through collaborative filtering
Recommendation systems are crucial in boosting companies’ revenues by implementing various strategies to engage customers and encourage them to invest in products or services. Businesses constantly desire to enhance these systems through different approaches. One effective method involves using hybrid recommendation systems, known for their ability to create high-performance models. We introduce a hybrid recommendation system that leverages two types of recommendation systems: first, a novel deep learning-based recommendation system that utilizes users’ and items’ content data, and second, a traditional recommendation system that employs users’ past behaviour data. We introduce a novel deep learning-based recommendation system called convolutional autoencoder recommendation system (CAERS). It uses a convolutional autoencoder (CAE) to capture high-order meaningful relationships between users’ and items’ content information and decode them to predict ratings. Subsequently, we design a traditional model-based collaborative filtering recommendation system (CF) that leverages users’ past behaviour data, utilizing singular value decomposition (SVD). Finally, in the last step, we combine the two method’s predictions with linear regression. We determine the optimal weight for each prediction generated by the collaborative filtering and the deep learning-based recommendation system. Our main objective is to introduce a hybrid model called CAERS-CF that leverages the strengths of the two mentioned approaches. For experimental purposes, we utilize two movie datasets to showcase the performance of CAERS-CF. Our model outperforms each constituent model individually and other state-of-the-art deep learning or hybrid models. Across both datasets, the hybrid CAERS-CF model demonstrates an average RMSE improvement of approximately 3.70% and an average MAE improvement of approximately 5.96% compared to the next best models.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.