最小结构逻辑的哥德尔-杜刚基式定理

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pawel Pawlowski, Thomas M Ferguson, Ethan Gertler
{"title":"最小结构逻辑的哥德尔-杜刚基式定理","authors":"Pawel Pawlowski, Thomas M Ferguson, Ethan Gertler","doi":"10.1093/logcom/exae045","DOIUrl":null,"url":null,"abstract":"This paper introduces a sequent calculus, $\\textbf{M}_{\\textbf{S}}$, the minimal structural logic, which includes all structural rules while excluding operational ones. Despite its limited calculus, $\\textbf{M}_{\\textbf{S}}$ unexpectedly shares a property with intuitionistic logic and modal logics between $\\textsf{S1}$ and $\\textsf{S5}$: it lacks sound and complete finitely-valued (deterministic) semantics. Mirroring Gödel’s and Dugundji’s findings, we demonstrate that $\\textbf{M}_{\\textbf{S}}$ does possess a natural finitely-valued non-deterministic semantics. In fact, we show that $\\textbf{M}_{\\textbf{S}}$ is sound and complete with respect to any semantics belonging to a natural class of maximally permissive non-deterministic matrices. We close by examining the case of subsystems of $\\textbf{M}_{\\textbf{S}}$, including the “structural kernels” of the strict-tolerant and tolerant-strict logics $\\textbf{ST}$ and $\\textbf{TS}$, and strengthen this result to also preclude finitely-valued deterministic semantics with respect to variable designated value frameworks.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gödel-Dugundji-style theorem for the minimal structural logic\",\"authors\":\"Pawel Pawlowski, Thomas M Ferguson, Ethan Gertler\",\"doi\":\"10.1093/logcom/exae045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a sequent calculus, $\\\\textbf{M}_{\\\\textbf{S}}$, the minimal structural logic, which includes all structural rules while excluding operational ones. Despite its limited calculus, $\\\\textbf{M}_{\\\\textbf{S}}$ unexpectedly shares a property with intuitionistic logic and modal logics between $\\\\textsf{S1}$ and $\\\\textsf{S5}$: it lacks sound and complete finitely-valued (deterministic) semantics. Mirroring Gödel’s and Dugundji’s findings, we demonstrate that $\\\\textbf{M}_{\\\\textbf{S}}$ does possess a natural finitely-valued non-deterministic semantics. In fact, we show that $\\\\textbf{M}_{\\\\textbf{S}}$ is sound and complete with respect to any semantics belonging to a natural class of maximally permissive non-deterministic matrices. We close by examining the case of subsystems of $\\\\textbf{M}_{\\\\textbf{S}}$, including the “structural kernels” of the strict-tolerant and tolerant-strict logics $\\\\textbf{ST}$ and $\\\\textbf{TS}$, and strengthen this result to also preclude finitely-valued deterministic semantics with respect to variable designated value frameworks.\",\"PeriodicalId\":50162,\"journal\":{\"name\":\"Journal of Logic and Computation\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/logcom/exae045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exae045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种序列微积分--$\textbf{M}_{\textbf{S}}$,即最小结构逻辑,它包括所有结构规则而不包括运算规则。尽管它的微积分有限,$\textbf{M}_{\textbf{S}}$却出人意料地与直觉逻辑和介于$\textsf{S1}$和$\textsf{S5}$之间的模态逻辑共享一个属性:它缺乏健全和完整的有限值(确定性)语义。与哥德尔和杜根吉的发现相类似,我们证明了$\textbf{M}_{\textbf{S}}$确实拥有自然的有限值非确定语义。事实上,我们证明$\textbf{M}_{textbf{S}}$对于属于最大许可非确定矩阵的自然类的任何语义来说都是健全和完整的。最后,我们研究了$\textbf{M}_{\textbf{S}}$的子系统的情况,包括严格容许逻辑和容许严格逻辑的 "结构内核"$\textbf{ST}$和$\textbf{TS}$,并强化了这一结果,从而也排除了关于变量指定值框架的有限值确定性语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gödel-Dugundji-style theorem for the minimal structural logic
This paper introduces a sequent calculus, $\textbf{M}_{\textbf{S}}$, the minimal structural logic, which includes all structural rules while excluding operational ones. Despite its limited calculus, $\textbf{M}_{\textbf{S}}$ unexpectedly shares a property with intuitionistic logic and modal logics between $\textsf{S1}$ and $\textsf{S5}$: it lacks sound and complete finitely-valued (deterministic) semantics. Mirroring Gödel’s and Dugundji’s findings, we demonstrate that $\textbf{M}_{\textbf{S}}$ does possess a natural finitely-valued non-deterministic semantics. In fact, we show that $\textbf{M}_{\textbf{S}}$ is sound and complete with respect to any semantics belonging to a natural class of maximally permissive non-deterministic matrices. We close by examining the case of subsystems of $\textbf{M}_{\textbf{S}}$, including the “structural kernels” of the strict-tolerant and tolerant-strict logics $\textbf{ST}$ and $\textbf{TS}$, and strengthen this result to also preclude finitely-valued deterministic semantics with respect to variable designated value frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Logic and Computation
Journal of Logic and Computation 工程技术-计算机:理论方法
CiteScore
1.90
自引率
14.30%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging. The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信