互补序列算法

Chai Wah Wu
{"title":"互补序列算法","authors":"Chai Wah Wu","doi":"arxiv-2409.05844","DOIUrl":null,"url":null,"abstract":"Finding the n-th positive square number is easy, as it is simply $n^2$. But\nhow do we find the complementary sequence, i.e. the n-th positive nonsquare\nnumber? For this case there is an explicit formula. However, for general\nconstraints on a number, this is harder to find. In this brief note, we study\nhow to compute the n-th integer that does (or does not) satisfy a certain\ncondition. In particular, we consider it as a fixed point problem, relate it to\nthe iterative method of Lambek and Moser, study a bisection approach to this\nproblem and provide a new formula for the n-th non-k-th power.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for complementary sequences\",\"authors\":\"Chai Wah Wu\",\"doi\":\"arxiv-2409.05844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding the n-th positive square number is easy, as it is simply $n^2$. But\\nhow do we find the complementary sequence, i.e. the n-th positive nonsquare\\nnumber? For this case there is an explicit formula. However, for general\\nconstraints on a number, this is harder to find. In this brief note, we study\\nhow to compute the n-th integer that does (or does not) satisfy a certain\\ncondition. In particular, we consider it as a fixed point problem, relate it to\\nthe iterative method of Lambek and Moser, study a bisection approach to this\\nproblem and provide a new formula for the n-th non-k-th power.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

找到 n 次正平方数很容易,因为它就是 $n^2$。但如何求互补序列,即 n 次正非平方数呢?对于这种情况,有一个明确的公式。然而,对于一个数的一般约束条件,这就比较难找了。在这篇短文中,我们将研究如何计算满足(或不满足)某个条件的第 n 个整数。特别是,我们将其视为一个定点问题,将其与 Lambek 和 Moser 的迭代法联系起来,研究了解决这一问题的分段方法,并提供了一个新的非 k 次幂的 n 次整数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for complementary sequences
Finding the n-th positive square number is easy, as it is simply $n^2$. But how do we find the complementary sequence, i.e. the n-th positive nonsquare number? For this case there is an explicit formula. However, for general constraints on a number, this is harder to find. In this brief note, we study how to compute the n-th integer that does (or does not) satisfy a certain condition. In particular, we consider it as a fixed point problem, relate it to the iterative method of Lambek and Moser, study a bisection approach to this problem and provide a new formula for the n-th non-k-th power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信