仿射曲面的loxodromic自动形的轨道交集

Marc Abboud
{"title":"仿射曲面的loxodromic自动形的轨道交集","authors":"Marc Abboud","doi":"arxiv-2409.07826","DOIUrl":null,"url":null,"abstract":"We show the following result: If $X_0$ is an affine surface over a field $K$\nand $f, g$ are two loxodromic automorphisms with an orbit meeting infinitely\nmany times, then $f$ and $g$ must share a common iterate. The proof uses the\npreliminary work of the author in [Abb23] on the dynamics of endomorphisms of\naffine surfaces and arguments from arithmetic dynamics. We then show a\ndynamical Mordell-Lang type result for surfaces in $X_0 \\times X_0$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection of orbits of loxodromic automorphisms of affine surfaces\",\"authors\":\"Marc Abboud\",\"doi\":\"arxiv-2409.07826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the following result: If $X_0$ is an affine surface over a field $K$\\nand $f, g$ are two loxodromic automorphisms with an orbit meeting infinitely\\nmany times, then $f$ and $g$ must share a common iterate. The proof uses the\\npreliminary work of the author in [Abb23] on the dynamics of endomorphisms of\\naffine surfaces and arguments from arithmetic dynamics. We then show a\\ndynamical Mordell-Lang type result for surfaces in $X_0 \\\\times X_0$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了以下结果:如果 $X_0$ 是一个域 $K$ 上的仿射曲面,而 $f,g$ 是两个loxodromic 自变分,它们的轨道相交无穷多次,那么 $f$ 和 $g$ 必须共享一个共同迭代。证明使用了作者在[Abb23]中关于有限曲面内形变动力学的初步工作以及算术动力学的论证。然后,我们展示了在 $X_0 \times X_0$ 中曲面的拟合莫德尔-朗类型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection of orbits of loxodromic automorphisms of affine surfaces
We show the following result: If $X_0$ is an affine surface over a field $K$ and $f, g$ are two loxodromic automorphisms with an orbit meeting infinitely many times, then $f$ and $g$ must share a common iterate. The proof uses the preliminary work of the author in [Abb23] on the dynamics of endomorphisms of affine surfaces and arguments from arithmetic dynamics. We then show a dynamical Mordell-Lang type result for surfaces in $X_0 \times X_0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信