p$-adic 场上环基本群的截面猜想

Giulio Bresciani
{"title":"p$-adic 场上环基本群的截面猜想","authors":"Giulio Bresciani","doi":"arxiv-2409.07923","DOIUrl":null,"url":null,"abstract":"The toric fundamental group is the smallest extension of the \\'etale\nfundamental group which can manage the monodromy of line bundles, in addition\nto the monodromy of finite \\'etale covers. It is an extension of the \\'etale\nfundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric\nfundamental group over finite extensions of $\\mathbb{Q}_{p}$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The section conjecture for the toric fundamental group over $p$-adic fields\",\"authors\":\"Giulio Bresciani\",\"doi\":\"arxiv-2409.07923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The toric fundamental group is the smallest extension of the \\\\'etale\\nfundamental group which can manage the monodromy of line bundles, in addition\\nto the monodromy of finite \\\\'etale covers. It is an extension of the \\\\'etale\\nfundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric\\nfundamental group over finite extensions of $\\\\mathbb{Q}_{p}$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环状基群是\'etale基群的最小外延,除了有限\'etale覆盖的单色性之外,它还可以管理线束的单色性。它是\'etale基群在环的投影极限上的扩展。我们证明了在 $\mathbb{Q}_{p}$ 的有限扩展上的环基本群的格罗登第克剖面猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The section conjecture for the toric fundamental group over $p$-adic fields
The toric fundamental group is the smallest extension of the \'etale fundamental group which can manage the monodromy of line bundles, in addition to the monodromy of finite \'etale covers. It is an extension of the \'etale fundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric fundamental group over finite extensions of $\mathbb{Q}_{p}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信