{"title":"p$-adic 场上环基本群的截面猜想","authors":"Giulio Bresciani","doi":"arxiv-2409.07923","DOIUrl":null,"url":null,"abstract":"The toric fundamental group is the smallest extension of the \\'etale\nfundamental group which can manage the monodromy of line bundles, in addition\nto the monodromy of finite \\'etale covers. It is an extension of the \\'etale\nfundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric\nfundamental group over finite extensions of $\\mathbb{Q}_{p}$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The section conjecture for the toric fundamental group over $p$-adic fields\",\"authors\":\"Giulio Bresciani\",\"doi\":\"arxiv-2409.07923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The toric fundamental group is the smallest extension of the \\\\'etale\\nfundamental group which can manage the monodromy of line bundles, in addition\\nto the monodromy of finite \\\\'etale covers. It is an extension of the \\\\'etale\\nfundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric\\nfundamental group over finite extensions of $\\\\mathbb{Q}_{p}$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The section conjecture for the toric fundamental group over $p$-adic fields
The toric fundamental group is the smallest extension of the \'etale
fundamental group which can manage the monodromy of line bundles, in addition
to the monodromy of finite \'etale covers. It is an extension of the \'etale
fundamental group by a projective limit of tori. We prove the analogue of Grothendieck's section conjecture for the toric
fundamental group over finite extensions of $\mathbb{Q}_{p}$.