几乎是素数 "长度 "的广义多边形数的普遍和

Soumyarup Banerjee, Ben Kane, Daejun Kim
{"title":"几乎是素数 \"长度 \"的广义多边形数的普遍和","authors":"Soumyarup Banerjee, Ben Kane, Daejun Kim","doi":"arxiv-2409.07895","DOIUrl":null,"url":null,"abstract":"In this paper, we consider sums of three generalized $m$-gonal numbers whose\nparameters are restricted to integers with a bounded number of prime divisors.\nWith some restrictions on $m$ modulo $30$, we show that a density one set of\nintegers is represented as such a sum, where the parameters are restricted to\nhave at most 6361 prime factors. Moreover, if the squarefree part of $f_m(n)$\nis sufficiently large, then $n$ is represented as such a sum, where $f_m(n)$ is\na natural linear function in $n$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal sums of generalized polygonal numbers of almost prime \\\"length\\\"\",\"authors\":\"Soumyarup Banerjee, Ben Kane, Daejun Kim\",\"doi\":\"arxiv-2409.07895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider sums of three generalized $m$-gonal numbers whose\\nparameters are restricted to integers with a bounded number of prime divisors.\\nWith some restrictions on $m$ modulo $30$, we show that a density one set of\\nintegers is represented as such a sum, where the parameters are restricted to\\nhave at most 6361 prime factors. Moreover, if the squarefree part of $f_m(n)$\\nis sufficiently large, then $n$ is represented as such a sum, where $f_m(n)$ is\\na natural linear function in $n$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了三个广义的$m$正交数之和,其参数被限制为具有一定数量素除数的整数。通过对$m$ modulo $30$的一些限制,我们证明了密度为1的整数集合被表示为这样的和,其中参数被限制为最多具有6361个素数因子。此外,如果$f_m(n)$的无平方部分足够大,那么$n$也可以表示为这样的和,其中$f_m(n)$是$n$中的自然线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal sums of generalized polygonal numbers of almost prime "length"
In this paper, we consider sums of three generalized $m$-gonal numbers whose parameters are restricted to integers with a bounded number of prime divisors. With some restrictions on $m$ modulo $30$, we show that a density one set of integers is represented as such a sum, where the parameters are restricted to have at most 6361 prime factors. Moreover, if the squarefree part of $f_m(n)$ is sufficiently large, then $n$ is represented as such a sum, where $f_m(n)$ is a natural linear function in $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信