没有适当的广义二次型是在二次域上通用的

Ondřej ChwiedziukCharles University, Matěj DoležálekCharles University, Simona HlavinkováCharles University, Emma PěchoučkováCharles University, Zdeněk PezlarCharles University, Om PrakashCharles University, Anna RůžičkováCharles University, Mikuláš ZindulkaCharles University
{"title":"没有适当的广义二次型是在二次域上通用的","authors":"Ondřej ChwiedziukCharles University, Matěj DoležálekCharles University, Simona HlavinkováCharles University, Emma PěchoučkováCharles University, Zdeněk PezlarCharles University, Om PrakashCharles University, Anna RůžičkováCharles University, Mikuláš ZindulkaCharles University","doi":"arxiv-2409.07941","DOIUrl":null,"url":null,"abstract":"We consider generalized quadratic forms over real quadratic number fields and\nprove, under a natural positive-definiteness condition, that a generalized\nquadratic form can only be universal if it contains a quadratic subform that is\nuniversal. We also construct an example illustrating that the\npositive-definiteness condition is necessary.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No proper generalized quadratic forms are universal over quadratic fields\",\"authors\":\"Ondřej ChwiedziukCharles University, Matěj DoležálekCharles University, Simona HlavinkováCharles University, Emma PěchoučkováCharles University, Zdeněk PezlarCharles University, Om PrakashCharles University, Anna RůžičkováCharles University, Mikuláš ZindulkaCharles University\",\"doi\":\"arxiv-2409.07941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider generalized quadratic forms over real quadratic number fields and\\nprove, under a natural positive-definiteness condition, that a generalized\\nquadratic form can only be universal if it contains a quadratic subform that is\\nuniversal. We also construct an example illustrating that the\\npositive-definiteness condition is necessary.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了实二次数域上的广义二次型,并在一个自然的正定义条件下证明,广义二次型只有包含一个广义二次型子形式,才可能是广义二次型。我们还构造了一个例子,说明正定义条件是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No proper generalized quadratic forms are universal over quadratic fields
We consider generalized quadratic forms over real quadratic number fields and prove, under a natural positive-definiteness condition, that a generalized quadratic form can only be universal if it contains a quadratic subform that is universal. We also construct an example illustrating that the positive-definiteness condition is necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信