关于涉及 $(\frac{j+k}p)\pm(\frac{j-k}p)$ 的行列式

Deyi Chen, Zhi-Wei Sun
{"title":"关于涉及 $(\\frac{j+k}p)\\pm(\\frac{j-k}p)$ 的行列式","authors":"Deyi Chen, Zhi-Wei Sun","doi":"arxiv-2409.08213","DOIUrl":null,"url":null,"abstract":"Let $p=2n+1$ be an odd prime. In this paper, we mainly evaluate determinants\ninvolving $(\\frac {j+k}p)\\pm(\\frac{j-k}p)$, where $(\\frac{\\cdot}p)$ denotes the\nLegendre symbol. When $p\\equiv1\\pmod4$, we determine the characteristic\npolynomials of the matrices\n$$\\left[\\left(\\frac{j+k}p\\right)+\\left(\\frac{j-k}p\\right)\\right]_{1\\le j,k\\le\nn}\\ \\ \\text{and}\\ \\\n\\left[\\left(\\frac{j+k}p\\right)-\\left(\\frac{j-k}p\\right)\\right]_{1\\le j,k\\le\nn},$$ and also prove that \\begin{align*} &\\\n\\left|x+\\left(\\frac{j+k}p\\right)+\\left(\\frac{j-k}p\\right)+\\left(\\frac\njp\\right)y+\\left(\\frac kp\\right)z+\\left(\\frac{jk}p\\right)w\\right|_{1\\le j,k\\le\nn} \\\\=&\\\n(-p)^{(p-5)/4}\\left(\\left(\\frac{p-1}2\\right)^2wx-\\left(\\frac{p-1}2y-1\\right)\\left(\\frac{p-1}2z-1\\right)\\right),\n\\end{align*} which was previously conjectured by the second author.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"298 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On determinants involving $(\\\\frac{j+k}p)\\\\pm(\\\\frac{j-k}p)$\",\"authors\":\"Deyi Chen, Zhi-Wei Sun\",\"doi\":\"arxiv-2409.08213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p=2n+1$ be an odd prime. In this paper, we mainly evaluate determinants\\ninvolving $(\\\\frac {j+k}p)\\\\pm(\\\\frac{j-k}p)$, where $(\\\\frac{\\\\cdot}p)$ denotes the\\nLegendre symbol. When $p\\\\equiv1\\\\pmod4$, we determine the characteristic\\npolynomials of the matrices\\n$$\\\\left[\\\\left(\\\\frac{j+k}p\\\\right)+\\\\left(\\\\frac{j-k}p\\\\right)\\\\right]_{1\\\\le j,k\\\\le\\nn}\\\\ \\\\ \\\\text{and}\\\\ \\\\\\n\\\\left[\\\\left(\\\\frac{j+k}p\\\\right)-\\\\left(\\\\frac{j-k}p\\\\right)\\\\right]_{1\\\\le j,k\\\\le\\nn},$$ and also prove that \\\\begin{align*} &\\\\\\n\\\\left|x+\\\\left(\\\\frac{j+k}p\\\\right)+\\\\left(\\\\frac{j-k}p\\\\right)+\\\\left(\\\\frac\\njp\\\\right)y+\\\\left(\\\\frac kp\\\\right)z+\\\\left(\\\\frac{jk}p\\\\right)w\\\\right|_{1\\\\le j,k\\\\le\\nn} \\\\\\\\=&\\\\\\n(-p)^{(p-5)/4}\\\\left(\\\\left(\\\\frac{p-1}2\\\\right)^2wx-\\\\left(\\\\frac{p-1}2y-1\\\\right)\\\\left(\\\\frac{p-1}2z-1\\\\right)\\\\right),\\n\\\\end{align*} which was previously conjectured by the second author.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"298 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $p=2n+1$ 是奇素数。本文主要评估涉及 $(\frac {j+k}p)\pm(\frac{j-k}p)$ 的行列式,其中 $(\frac\{cdot}p)$ 表示列根德符号。当 $p\equiv1\pmod4$ 时,我们确定矩阵$$left[\left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)\right]_{1/le j、k\len}\text{and}\left[\left(\frac{j+k}p\right)-\left(\frac{j-k}p\right)\right]_{1\le j、klen},$$并且还证明:begin{align*} &\left|x+left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)+left(\fracjp\right)y+left(\frac kp\right)z+left(\frac{jk}p\right)w\right|_{1\le j,k\len}\=&\(-p)^{(p-5)/4}\left(\left(\frac{p-1}2\right)^2wx-\left(\frac{p-1}2y-1\right)\left(\frac{p-1}2z-1\right)\right),\end{align*} 这是第二位作者之前的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On determinants involving $(\frac{j+k}p)\pm(\frac{j-k}p)$
Let $p=2n+1$ be an odd prime. In this paper, we mainly evaluate determinants involving $(\frac {j+k}p)\pm(\frac{j-k}p)$, where $(\frac{\cdot}p)$ denotes the Legendre symbol. When $p\equiv1\pmod4$, we determine the characteristic polynomials of the matrices $$\left[\left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)\right]_{1\le j,k\le n}\ \ \text{and}\ \ \left[\left(\frac{j+k}p\right)-\left(\frac{j-k}p\right)\right]_{1\le j,k\le n},$$ and also prove that \begin{align*} &\ \left|x+\left(\frac{j+k}p\right)+\left(\frac{j-k}p\right)+\left(\frac jp\right)y+\left(\frac kp\right)z+\left(\frac{jk}p\right)w\right|_{1\le j,k\le n} \\=&\ (-p)^{(p-5)/4}\left(\left(\frac{p-1}2\right)^2wx-\left(\frac{p-1}2y-1\right)\left(\frac{p-1}2z-1\right)\right), \end{align*} which was previously conjectured by the second author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信