论精细莫德尔-魏尔群的伪无效性

Meng Fai Lim, Chao Qin, Jun Wang
{"title":"论精细莫德尔-魏尔群的伪无效性","authors":"Meng Fai Lim, Chao Qin, Jun Wang","doi":"arxiv-2409.03546","DOIUrl":null,"url":null,"abstract":"Let $E$ be an elliptic curve defined over $\\mathbb{Q}$ with good ordinary\nreduction at a prime $p\\geq 5$, and let $F$ be an imaginary quadratic field.\nUnder appropriate assumptions, we show that the Pontryagin dual of the fine\nMordell-Weil group of $E$ over the $\\mathbb{Z}_p^2$-extension of $F$ is\npseudo-null as a module over the Iwasawa algebra of the group $\\mathbb{Z}_p^2$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pseudo-nullity of fine Mordell-Weil group\",\"authors\":\"Meng Fai Lim, Chao Qin, Jun Wang\",\"doi\":\"arxiv-2409.03546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be an elliptic curve defined over $\\\\mathbb{Q}$ with good ordinary\\nreduction at a prime $p\\\\geq 5$, and let $F$ be an imaginary quadratic field.\\nUnder appropriate assumptions, we show that the Pontryagin dual of the fine\\nMordell-Weil group of $E$ over the $\\\\mathbb{Z}_p^2$-extension of $F$ is\\npseudo-null as a module over the Iwasawa algebra of the group $\\\\mathbb{Z}_p^2$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $E$ 是定义在 $\mathbb{Q}$ 上的椭圆曲线,在素数 $p\geq 5$ 处有良好的普通还原,让 $F$ 是一个虚二次域。在适当的假设条件下,我们证明了在 $F$ 的 $\mathbb{Z}_p^2$ 扩展上 $E$ 的 fineMordell-Weil 群的 Pontryagin 对偶作为在 $\mathbb{Z}_p^2$ 群的岩泽代数上的模块是伪空的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pseudo-nullity of fine Mordell-Weil group
Let $E$ be an elliptic curve defined over $\mathbb{Q}$ with good ordinary reduction at a prime $p\geq 5$, and let $F$ be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell-Weil group of $E$ over the $\mathbb{Z}_p^2$-extension of $F$ is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb{Z}_p^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信