全微分形式的西格尔算子

Shouhei Ma
{"title":"全微分形式的西格尔算子","authors":"Shouhei Ma","doi":"arxiv-2409.04315","DOIUrl":null,"url":null,"abstract":"We give a geometric interpretation of the Siegel operators for holomorphic\ndifferential forms on Siegel modular varieties. This involves extension of the\ndifferential forms over a toroidal compactification, and we show that the\nSiegel operator essentially describes the restriction and descent to the\nboundary Kuga variety via holomorphic Leray filtration. As a consequence, we\nobtain equivalence of various notions of \"vanishing at boundary'' for\nholomorphic forms. We also study the case of orthogonal modular varieties.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Siegel operators for holomorphic differential forms\",\"authors\":\"Shouhei Ma\",\"doi\":\"arxiv-2409.04315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a geometric interpretation of the Siegel operators for holomorphic\\ndifferential forms on Siegel modular varieties. This involves extension of the\\ndifferential forms over a toroidal compactification, and we show that the\\nSiegel operator essentially describes the restriction and descent to the\\nboundary Kuga variety via holomorphic Leray filtration. As a consequence, we\\nobtain equivalence of various notions of \\\"vanishing at boundary'' for\\nholomorphic forms. We also study the case of orthogonal modular varieties.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了西格尔模形上全形微分形式的西格尔算子的几何解释。这涉及在环形紧凑化上扩展微分形式,我们证明西格尔算子本质上描述了通过全形勒雷滤过对边界库加(Kuga)变体的限制和下降。因此,我们得到了全形形式的各种 "边界消失 "概念的等价性。我们还研究了正交模态品种的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Siegel operators for holomorphic differential forms
We give a geometric interpretation of the Siegel operators for holomorphic differential forms on Siegel modular varieties. This involves extension of the differential forms over a toroidal compactification, and we show that the Siegel operator essentially describes the restriction and descent to the boundary Kuga variety via holomorphic Leray filtration. As a consequence, we obtain equivalence of various notions of "vanishing at boundary'' for holomorphic forms. We also study the case of orthogonal modular varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信