将 Carlitz 和 McConnel 的一个结果扩展到非排列的多项式

Bence Csajbók
{"title":"将 Carlitz 和 McConnel 的一个结果扩展到非排列的多项式","authors":"Bence Csajbók","doi":"arxiv-2409.04045","DOIUrl":null,"url":null,"abstract":"Let $D$ denote the set of directions determined by the graph of a polynomial\n$f$ of $\\mathbb{F}_q[x]$, where $q$ is a power of the prime $p$. If $D$ is\ncontained in a multiplicative subgroup $M$ of $\\mathbb{F}_q^\\times$, then by a\nresult of Carlitz and McConnel it follows that $f(x)=ax^{p^k}+b$ for some $k\\in\n\\mathbb{N}$. Of course, if $D\\subseteq M$, then $0\\notin D$ and hence $f$ is a\npermutation. If we assume the weaker condition $D\\subseteq M \\cup \\{0\\}$, then\n$f$ is not necessarily a permutation, but Sziklai conjectured that\n$f(x)=ax^{p^k}+b$ follows also in this case. When $q$ is odd, and the index of\n$M$ is even, then a result of Ball, Blokhuis, Brouwer, Storme and Sz\\H onyi\ncombined with a result of McGuire and G\\\"olo\\u{g}lu proves the conjecture.\nAssume $\\deg f\\geq 1$. We prove that if the size of $D^{-1}D=\\{d^{-1}d' : d\\in\nD\\setminus \\{0\\},\\, d'\\in D\\}$ is less than $q-\\deg f+2$, then $f$ is a\npermutation of $\\mathbb{F}_q$. We use this result to verify the conjecture of\nSziklai.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending a result of Carlitz and McConnel to polynomials which are not permutations\",\"authors\":\"Bence Csajbók\",\"doi\":\"arxiv-2409.04045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ denote the set of directions determined by the graph of a polynomial\\n$f$ of $\\\\mathbb{F}_q[x]$, where $q$ is a power of the prime $p$. If $D$ is\\ncontained in a multiplicative subgroup $M$ of $\\\\mathbb{F}_q^\\\\times$, then by a\\nresult of Carlitz and McConnel it follows that $f(x)=ax^{p^k}+b$ for some $k\\\\in\\n\\\\mathbb{N}$. Of course, if $D\\\\subseteq M$, then $0\\\\notin D$ and hence $f$ is a\\npermutation. If we assume the weaker condition $D\\\\subseteq M \\\\cup \\\\{0\\\\}$, then\\n$f$ is not necessarily a permutation, but Sziklai conjectured that\\n$f(x)=ax^{p^k}+b$ follows also in this case. When $q$ is odd, and the index of\\n$M$ is even, then a result of Ball, Blokhuis, Brouwer, Storme and Sz\\\\H onyi\\ncombined with a result of McGuire and G\\\\\\\"olo\\\\u{g}lu proves the conjecture.\\nAssume $\\\\deg f\\\\geq 1$. We prove that if the size of $D^{-1}D=\\\\{d^{-1}d' : d\\\\in\\nD\\\\setminus \\\\{0\\\\},\\\\, d'\\\\in D\\\\}$ is less than $q-\\\\deg f+2$, then $f$ is a\\npermutation of $\\\\mathbb{F}_q$. We use this result to verify the conjecture of\\nSziklai.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$D$表示由$\mathbb{F}_q[x]$的多项式$f$的图所决定的方向集,其中$q$是素数$p$的幂。如果$D$包含在$\mathbb{F}_q^\times$的乘法子群$M$中,那么根据Carlitz和McConnel的结果,对于某个$k\in\mathbb{N}$,$f(x)=ax^{p^k}+b$。当然,如果 $D\subseteq M$,那么 $0\notin D$,因此 $f$ 是畸变的。如果我们假设较弱的条件 $D\subseteq M \cup \{0\}$,那么$f$就不一定是一个置换,但是西克莱(Sziklai)猜想$f(x)=ax^{p^k}+b$在这种情况下也是成立的。当 $q$ 是奇数,而 $M$ 的索引是偶数时,Ball、Blokhuis、Brouwer、Storme 和 Sz\H onyic 的一个结果与 McGuire 和 G\"olo\u{g}lu 的一个结果结合起来证明了猜想。假设 $\deg f\geq 1$。我们证明,如果 $D^{-1}D=\{d^{-1}d' : d\inD\setminus \{0\},\,d'\inD\}$的大小小于 $q-\deg f+2$,那么 $f$就是 $mathbb{F}_q$ 的一个突变。我们用这个结果来验证齐克来的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending a result of Carlitz and McConnel to polynomials which are not permutations
Let $D$ denote the set of directions determined by the graph of a polynomial $f$ of $\mathbb{F}_q[x]$, where $q$ is a power of the prime $p$. If $D$ is contained in a multiplicative subgroup $M$ of $\mathbb{F}_q^\times$, then by a result of Carlitz and McConnel it follows that $f(x)=ax^{p^k}+b$ for some $k\in \mathbb{N}$. Of course, if $D\subseteq M$, then $0\notin D$ and hence $f$ is a permutation. If we assume the weaker condition $D\subseteq M \cup \{0\}$, then $f$ is not necessarily a permutation, but Sziklai conjectured that $f(x)=ax^{p^k}+b$ follows also in this case. When $q$ is odd, and the index of $M$ is even, then a result of Ball, Blokhuis, Brouwer, Storme and Sz\H onyi combined with a result of McGuire and G\"olo\u{g}lu proves the conjecture. Assume $\deg f\geq 1$. We prove that if the size of $D^{-1}D=\{d^{-1}d' : d\in D\setminus \{0\},\, d'\in D\}$ is less than $q-\deg f+2$, then $f$ is a permutation of $\mathbb{F}_q$. We use this result to verify the conjecture of Sziklai.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信