通过特殊化实现库默尔曲面在特征二中的去奇点化

Alvaro Gonzalez-Hernandez
{"title":"通过特殊化实现库默尔曲面在特征二中的去奇点化","authors":"Alvaro Gonzalez-Hernandez","doi":"arxiv-2409.04532","DOIUrl":null,"url":null,"abstract":"We study the birational geometry of the Kummer surfaces associated to the\nJacobian varieties of genus two curves, with a particular focus on fields of\ncharacteristic two. In order to do so, we explicitly compute a projective\nembedding of the Jacobian of a general genus two curve and, from this, we\nconstruct its associated Kummer surface. This explicit construction produces a\nmodel for desingularised Kummer surfaces over any field of characteristic not\ntwo, and specialising these equations to characteristic two provides a model of\na partial desingularisation. Adapting the classic description of the Picard\nlattice in terms of tropes, we also describe how to explicitly find completely\ndesingularised models of Kummer surfaces whenever the $p$-rank is not zero. In\nthe final section of this paper, we compute an example of a Kummer surface with\neverywhere good reduction over a quadratic number field, and draw connections\nbetween the models we computed and a criterion that determines when a Kummer\nsurface has good reduction at two.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"65 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit desingularisation of Kummer surfaces in characteristic two via specialisation\",\"authors\":\"Alvaro Gonzalez-Hernandez\",\"doi\":\"arxiv-2409.04532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the birational geometry of the Kummer surfaces associated to the\\nJacobian varieties of genus two curves, with a particular focus on fields of\\ncharacteristic two. In order to do so, we explicitly compute a projective\\nembedding of the Jacobian of a general genus two curve and, from this, we\\nconstruct its associated Kummer surface. This explicit construction produces a\\nmodel for desingularised Kummer surfaces over any field of characteristic not\\ntwo, and specialising these equations to characteristic two provides a model of\\na partial desingularisation. Adapting the classic description of the Picard\\nlattice in terms of tropes, we also describe how to explicitly find completely\\ndesingularised models of Kummer surfaces whenever the $p$-rank is not zero. In\\nthe final section of this paper, we compute an example of a Kummer surface with\\neverywhere good reduction over a quadratic number field, and draw connections\\nbetween the models we computed and a criterion that determines when a Kummer\\nsurface has good reduction at two.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"65 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与二属曲线的雅各布变项相关的库默曲面的双向几何,尤其关注特征二域。为此,我们明确计算了一般二属曲线的雅各比的投影嵌入,并由此构造了其相关的库默曲面。这种明确的构造为任何非二特征域上的去星形化库默曲面提供了一个模型,而将这些方程特殊化为二特征则提供了一个部分去星形化的模型。根据对毕卡格子的经典描述,我们还描述了如何在 $p$-rank 不为零的情况下,明确地找到库默曲面的完全去周期化模型。在本文的最后一部分,我们计算了一个库默曲面的例子,它在二次数域上具有无处不在的良好还原,并将我们计算的模型与确定库默曲面何时在二处具有良好还原的标准联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit desingularisation of Kummer surfaces in characteristic two via specialisation
We study the birational geometry of the Kummer surfaces associated to the Jacobian varieties of genus two curves, with a particular focus on fields of characteristic two. In order to do so, we explicitly compute a projective embedding of the Jacobian of a general genus two curve and, from this, we construct its associated Kummer surface. This explicit construction produces a model for desingularised Kummer surfaces over any field of characteristic not two, and specialising these equations to characteristic two provides a model of a partial desingularisation. Adapting the classic description of the Picard lattice in terms of tropes, we also describe how to explicitly find completely desingularised models of Kummer surfaces whenever the $p$-rank is not zero. In the final section of this paper, we compute an example of a Kummer surface with everywhere good reduction over a quadratic number field, and draw connections between the models we computed and a criterion that determines when a Kummer surface has good reduction at two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信