快慢三角映射的遍历性和代数性

Thomas Garrity, Jacob Lehmann Duke
{"title":"快慢三角映射的遍历性和代数性","authors":"Thomas Garrity, Jacob Lehmann Duke","doi":"arxiv-2409.05822","DOIUrl":null,"url":null,"abstract":"Our goal is to show that both the fast and slow versions of the triangle map\n(a type of multi-dimensional continued fraction algorithm) in dimension $n$ are\nergodic, resolving a conjecture of Messaoudi, Noguiera and Schweiger. This\nparticular type of higher dimensional multi-dimensional continued fraction\nalgorithm has recently been linked to the study of partition numbers, with the\nresult that the underlying dynamics has combinatorial implications.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ergodicity and Algebraticity of the Fast and Slow Triangle Maps\",\"authors\":\"Thomas Garrity, Jacob Lehmann Duke\",\"doi\":\"arxiv-2409.05822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our goal is to show that both the fast and slow versions of the triangle map\\n(a type of multi-dimensional continued fraction algorithm) in dimension $n$ are\\nergodic, resolving a conjecture of Messaoudi, Noguiera and Schweiger. This\\nparticular type of higher dimensional multi-dimensional continued fraction\\nalgorithm has recently been linked to the study of partition numbers, with the\\nresult that the underlying dynamics has combinatorial implications.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是证明三角形映射(一种多维连续分数算法)在 $n$ 维度下的快速和慢速版本都是连续的,从而解决 Messaoudi、Noguiera 和 Schweiger 的一个猜想。这种特殊类型的高维多维连续分数算法最近与分割数的研究联系在一起,其结果是基本动力学具有组合意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodicity and Algebraticity of the Fast and Slow Triangle Maps
Our goal is to show that both the fast and slow versions of the triangle map (a type of multi-dimensional continued fraction algorithm) in dimension $n$ are ergodic, resolving a conjecture of Messaoudi, Noguiera and Schweiger. This particular type of higher dimensional multi-dimensional continued fraction algorithm has recently been linked to the study of partition numbers, with the result that the underlying dynamics has combinatorial implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信