循环域由完全实域的循环 Hecke {\it L} 值生成,II

Jaesung kwon, Hae-Sang Sun
{"title":"循环域由完全实域的循环 Hecke {\\it L} 值生成,II","authors":"Jaesung kwon, Hae-Sang Sun","doi":"arxiv-2409.04661","DOIUrl":null,"url":null,"abstract":"Jun-Lee-Sun posed the question of whether the cyclotomic Hecke field can be\ngenerated by a single critical $L$-value of a cyclotomic Hecke character over a\ntotally real field. They provided an answer to this question in the case where\nthe tame Hecke character is trivial. In this paper, we extend their work to\naddress the case of non-trivial Hecke characters over solvable totally real\nnumber fields. Our approach builds upon the primary estimation obtained by\nJun-Lee-Sun, supplemented with new inputs, including global class field theory,\nduality principles, the analytic behavior of partial Hecke $L$-functions, and\nthe non-vanishing of twisted Gauss sums and Hyper Kloosterman sums.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclotomic fields are generated by cyclotomic Hecke {\\\\it L}-values of totally real fields, II\",\"authors\":\"Jaesung kwon, Hae-Sang Sun\",\"doi\":\"arxiv-2409.04661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jun-Lee-Sun posed the question of whether the cyclotomic Hecke field can be\\ngenerated by a single critical $L$-value of a cyclotomic Hecke character over a\\ntotally real field. They provided an answer to this question in the case where\\nthe tame Hecke character is trivial. In this paper, we extend their work to\\naddress the case of non-trivial Hecke characters over solvable totally real\\nnumber fields. Our approach builds upon the primary estimation obtained by\\nJun-Lee-Sun, supplemented with new inputs, including global class field theory,\\nduality principles, the analytic behavior of partial Hecke $L$-functions, and\\nthe non-vanishing of twisted Gauss sums and Hyper Kloosterman sums.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Jun-Lee-Sun 提出了这样一个问题:在全等实数域上,循环赫克字元的单临界 $L$ 值能否生成循环赫克域。他们给出了在驯服赫克特征是微不足道的情况下这个问题的答案。在本文中,我们扩展了他们的工作,以解决可解完全实数域上的非琐碎赫克字符的情况。我们的方法建立在孙正义的主要估计之上,并辅以新的输入,包括全类场论、对偶性原理、部分赫克$L$函数的分析行为,以及扭曲高斯和与超克罗斯特曼和的非消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclotomic fields are generated by cyclotomic Hecke {\it L}-values of totally real fields, II
Jun-Lee-Sun posed the question of whether the cyclotomic Hecke field can be generated by a single critical $L$-value of a cyclotomic Hecke character over a totally real field. They provided an answer to this question in the case where the tame Hecke character is trivial. In this paper, we extend their work to address the case of non-trivial Hecke characters over solvable totally real number fields. Our approach builds upon the primary estimation obtained by Jun-Lee-Sun, supplemented with new inputs, including global class field theory, duality principles, the analytic behavior of partial Hecke $L$-functions, and the non-vanishing of twisted Gauss sums and Hyper Kloosterman sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信