切分与投影集合的有界距离等价性和可等价分解性

Sigrid Grepstad
{"title":"切分与投影集合的有界距离等价性和可等价分解性","authors":"Sigrid Grepstad","doi":"arxiv-2409.05450","DOIUrl":null,"url":null,"abstract":"We show that given a lattice $\\Gamma \\subset \\mathbb{R}^m \\times\n\\mathbb{R}^n$, and projections $p_1$ and $p_2$ onto $\\mathbb{R}^m$ and\n$\\mathbb{R}^n$ respectively, cut-and-project sets obtained using Jordan\nmeasurable windows $W$ and $W'$ in $\\mathbb{R}^n$ of equal measure are bounded\ndistance equivalent only if $W$ and $W'$ are equidecomposable by translations\nin $p_2(\\Gamma)$. As a consequence, we obtain an explicit description of the\nbounded distance equivalence classes in the hulls of simple quasicrystals.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded distance equivalence of cut-and-project sets and equidecomposability\",\"authors\":\"Sigrid Grepstad\",\"doi\":\"arxiv-2409.05450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that given a lattice $\\\\Gamma \\\\subset \\\\mathbb{R}^m \\\\times\\n\\\\mathbb{R}^n$, and projections $p_1$ and $p_2$ onto $\\\\mathbb{R}^m$ and\\n$\\\\mathbb{R}^n$ respectively, cut-and-project sets obtained using Jordan\\nmeasurable windows $W$ and $W'$ in $\\\\mathbb{R}^n$ of equal measure are bounded\\ndistance equivalent only if $W$ and $W'$ are equidecomposable by translations\\nin $p_2(\\\\Gamma)$. As a consequence, we obtain an explicit description of the\\nbounded distance equivalence classes in the hulls of simple quasicrystals.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,给定一个网格 $\Gamma \子集 \mathbb{R}^m \times\mathbb{R}^n$, 以及投影 $p_1$ 和 $p_2$ 分别到 $\mathbb{R}^m$ 和 $\mathbb{R}^n$ 上、只有当$W$和$W'$通过在$p_2(\Gamma)$中平移可等价分解时,使用等度量的$W$和$W'$在$\mathbb{R}^n$中得到的乔丹可度量窗口$W$和$W'$的切分与投影集合才是有界距离等价的。因此,我们得到了简单准晶体壳中有界距离等价类的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded distance equivalence of cut-and-project sets and equidecomposability
We show that given a lattice $\Gamma \subset \mathbb{R}^m \times \mathbb{R}^n$, and projections $p_1$ and $p_2$ onto $\mathbb{R}^m$ and $\mathbb{R}^n$ respectively, cut-and-project sets obtained using Jordan measurable windows $W$ and $W'$ in $\mathbb{R}^n$ of equal measure are bounded distance equivalent only if $W$ and $W'$ are equidecomposable by translations in $p_2(\Gamma)$. As a consequence, we obtain an explicit description of the bounded distance equivalence classes in the hulls of simple quasicrystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信