数域和函数域中线性形式元组中的素数

Habibur Rahaman
{"title":"数域和函数域中线性形式元组中的素数","authors":"Habibur Rahaman","doi":"arxiv-2409.04705","DOIUrl":null,"url":null,"abstract":"Following the work of Castillo-Hall-Oliver-Pollack-Thompson who extended\nMaynard-Tao theorem on admissible tuples to number fields and function fields\nfor tuples with monic linear forms, here we obtain the Maynard-Tao theorem for\nadmissible tuples of linear forms with arbitrary leading coefficients in number\nfields and function fields. Also, we provide some applications of our results.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primes in Tuples of Linear Forms in Number Fields and Function Fields\",\"authors\":\"Habibur Rahaman\",\"doi\":\"arxiv-2409.04705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the work of Castillo-Hall-Oliver-Pollack-Thompson who extended\\nMaynard-Tao theorem on admissible tuples to number fields and function fields\\nfor tuples with monic linear forms, here we obtain the Maynard-Tao theorem for\\nadmissible tuples of linear forms with arbitrary leading coefficients in number\\nfields and function fields. Also, we provide some applications of our results.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卡斯蒂略-霍尔-奥利弗-波拉克-汤普森(Castillo-Hall-Oliver-Pollack-Thompson)将梅纳德-陶(Maynard-Tao)可容许元组定理推广到了数域和函数域中的一元线性形式的元组,在此,我们得到了数域和函数域中具有任意前导系数的线性形式的可容许元组的梅纳德-陶定理。此外,我们还提供了一些结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primes in Tuples of Linear Forms in Number Fields and Function Fields
Following the work of Castillo-Hall-Oliver-Pollack-Thompson who extended Maynard-Tao theorem on admissible tuples to number fields and function fields for tuples with monic linear forms, here we obtain the Maynard-Tao theorem for admissible tuples of linear forms with arbitrary leading coefficients in number fields and function fields. Also, we provide some applications of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信