{"title":"脑肿瘤分析的进展:基于 MRI 分类和分割的机器学习、混合深度学习和迁移学习方法综述","authors":"Surajit Das, Rajat Subhra Goswami","doi":"10.1007/s11042-024-20203-0","DOIUrl":null,"url":null,"abstract":"<p>Brain tumors, whether cancerous or noncancerous, can be life-threatening due to abnormal cell growth, potentially causing organ dysfunction and mortality in adults. Brain tumor segmentation (BTS) and brain tumor classification (BTC) technologies are crucial in diagnosing and treating brain tumors. They assist doctors in locating and measuring tumors and developing treatment and rehabilitation strategies. Despite their importance in the medical field, BTC and BTS remain challenging. This comprehensive review specifically analyses machine and deep learning methodologies, including convolutional neural networks (CNN), transfer learning (TL), and hybrid models for BTS and BTC. We discuss CNN architectures like U-Net++, which is known for its high segmentation accuracy in 2D and 3D medical images. Additionally, transfer learning utilises pre-trained models such as ResNet, Inception, etc., from ImageNet, fine-tuned on brain tumor-specific datasets to enhance classification performance and sensitivity despite limited medical data. Hybrid models combine deep learning techniques with machine learning, using CNN for initial segmentation and traditional classification methods, improving accuracy. We discuss commonly used benchmark datasets in brain tumors research, including the BraTS dataset and the TCIA database, and evaluate performance metrics, such as the F1-score, accuracy, sensitivity, specificity, and the dice coefficient, emphasising their significance and standard thresholds in brain tumors analysis. The review addresses current machine learning (ML) and deep learning (DL) based BTS and BTC challenges and proposes solutions such as explainable deep learning models and multi-task learning frameworks. These insights aim to guide future advancements in fostering the development of accurate and efficient tools for improved patient care in brain tumors analysis.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in brain tumor analysis: a comprehensive review of machine learning, hybrid deep learning, and transfer learning approaches for MRI-based classification and segmentation\",\"authors\":\"Surajit Das, Rajat Subhra Goswami\",\"doi\":\"10.1007/s11042-024-20203-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain tumors, whether cancerous or noncancerous, can be life-threatening due to abnormal cell growth, potentially causing organ dysfunction and mortality in adults. Brain tumor segmentation (BTS) and brain tumor classification (BTC) technologies are crucial in diagnosing and treating brain tumors. They assist doctors in locating and measuring tumors and developing treatment and rehabilitation strategies. Despite their importance in the medical field, BTC and BTS remain challenging. This comprehensive review specifically analyses machine and deep learning methodologies, including convolutional neural networks (CNN), transfer learning (TL), and hybrid models for BTS and BTC. We discuss CNN architectures like U-Net++, which is known for its high segmentation accuracy in 2D and 3D medical images. Additionally, transfer learning utilises pre-trained models such as ResNet, Inception, etc., from ImageNet, fine-tuned on brain tumor-specific datasets to enhance classification performance and sensitivity despite limited medical data. Hybrid models combine deep learning techniques with machine learning, using CNN for initial segmentation and traditional classification methods, improving accuracy. We discuss commonly used benchmark datasets in brain tumors research, including the BraTS dataset and the TCIA database, and evaluate performance metrics, such as the F1-score, accuracy, sensitivity, specificity, and the dice coefficient, emphasising their significance and standard thresholds in brain tumors analysis. The review addresses current machine learning (ML) and deep learning (DL) based BTS and BTC challenges and proposes solutions such as explainable deep learning models and multi-task learning frameworks. These insights aim to guide future advancements in fostering the development of accurate and efficient tools for improved patient care in brain tumors analysis.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20203-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20203-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advancements in brain tumor analysis: a comprehensive review of machine learning, hybrid deep learning, and transfer learning approaches for MRI-based classification and segmentation
Brain tumors, whether cancerous or noncancerous, can be life-threatening due to abnormal cell growth, potentially causing organ dysfunction and mortality in adults. Brain tumor segmentation (BTS) and brain tumor classification (BTC) technologies are crucial in diagnosing and treating brain tumors. They assist doctors in locating and measuring tumors and developing treatment and rehabilitation strategies. Despite their importance in the medical field, BTC and BTS remain challenging. This comprehensive review specifically analyses machine and deep learning methodologies, including convolutional neural networks (CNN), transfer learning (TL), and hybrid models for BTS and BTC. We discuss CNN architectures like U-Net++, which is known for its high segmentation accuracy in 2D and 3D medical images. Additionally, transfer learning utilises pre-trained models such as ResNet, Inception, etc., from ImageNet, fine-tuned on brain tumor-specific datasets to enhance classification performance and sensitivity despite limited medical data. Hybrid models combine deep learning techniques with machine learning, using CNN for initial segmentation and traditional classification methods, improving accuracy. We discuss commonly used benchmark datasets in brain tumors research, including the BraTS dataset and the TCIA database, and evaluate performance metrics, such as the F1-score, accuracy, sensitivity, specificity, and the dice coefficient, emphasising their significance and standard thresholds in brain tumors analysis. The review addresses current machine learning (ML) and deep learning (DL) based BTS and BTC challenges and proposes solutions such as explainable deep learning models and multi-task learning frameworks. These insights aim to guide future advancements in fostering the development of accurate and efficient tools for improved patient care in brain tumors analysis.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms