利用熵自适应分数微分驱动主动轮廓进行噪声图像分割

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shang Zhuge, Zhiheng Zhou, Wenlue Zhou, Jiangfeng Wu, Ming Deng, Ming Dai
{"title":"利用熵自适应分数微分驱动主动轮廓进行噪声图像分割","authors":"Shang Zhuge, Zhiheng Zhou, Wenlue Zhou, Jiangfeng Wu, Ming Deng, Ming Dai","doi":"10.1007/s11042-024-20058-5","DOIUrl":null,"url":null,"abstract":"<p>The central challenge in noisy image segmentation is how to effectively suppress or remove noise while preserving important features, thereby achieving accurate image segmentation. Active contour models are widely utilized in these tasks. Nevertheless, they are unable to remove high noise while segmenting images with weak edges. In order to mitigate the adverse effects of non-uniformity while preserving the details of the image on image segmentation, a novel approach is introduced: the adaptive fractional differential active contour image segmentation method. This method aims to address the aforementioned problem. Our methods adaptively define the fractional order using the proposed entropy, which enhances the edge extraction ability of image entropy in the presence of image intensity inhomogeneity and noise, different orders are applied to different pixels. The introduced entropy demonstrates resilience against significant noise, thereby enhancing the model’s capacity to accurately and seamlessly delineate boundaries. Empirical evaluations conducted on various test images substantiate the model’s efficacy in addressing intensity inhomogeneity and achieving exceptional segmentation accuracy.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noisy image segmentation utilizing entropy-adaptive fractional differential-driven active contours\",\"authors\":\"Shang Zhuge, Zhiheng Zhou, Wenlue Zhou, Jiangfeng Wu, Ming Deng, Ming Dai\",\"doi\":\"10.1007/s11042-024-20058-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The central challenge in noisy image segmentation is how to effectively suppress or remove noise while preserving important features, thereby achieving accurate image segmentation. Active contour models are widely utilized in these tasks. Nevertheless, they are unable to remove high noise while segmenting images with weak edges. In order to mitigate the adverse effects of non-uniformity while preserving the details of the image on image segmentation, a novel approach is introduced: the adaptive fractional differential active contour image segmentation method. This method aims to address the aforementioned problem. Our methods adaptively define the fractional order using the proposed entropy, which enhances the edge extraction ability of image entropy in the presence of image intensity inhomogeneity and noise, different orders are applied to different pixels. The introduced entropy demonstrates resilience against significant noise, thereby enhancing the model’s capacity to accurately and seamlessly delineate boundaries. Empirical evaluations conducted on various test images substantiate the model’s efficacy in addressing intensity inhomogeneity and achieving exceptional segmentation accuracy.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20058-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20058-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

噪声图像分割的核心挑战是如何在保留重要特征的同时有效抑制或去除噪声,从而实现准确的图像分割。主动轮廓模型在这些任务中得到了广泛应用。然而,在分割边缘较弱的图像时,它们无法去除高噪声。为了在保留图像细节的同时减轻非均匀性对图像分割的不利影响,我们引入了一种新方法:自适应分数微分主动轮廓图像分割方法。该方法旨在解决上述问题。我们的方法利用所提出的熵自适应地定义分数阶数,从而增强了图像熵在存在图像强度不均匀性和噪声时的边缘提取能力,不同的阶数适用于不同的像素。引入的熵能抵御明显的噪声,从而增强了模型准确、无缝地划分边界的能力。在各种测试图像上进行的实证评估证实了该模型在解决强度不均匀性和实现卓越的分割准确性方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noisy image segmentation utilizing entropy-adaptive fractional differential-driven active contours

Noisy image segmentation utilizing entropy-adaptive fractional differential-driven active contours

The central challenge in noisy image segmentation is how to effectively suppress or remove noise while preserving important features, thereby achieving accurate image segmentation. Active contour models are widely utilized in these tasks. Nevertheless, they are unable to remove high noise while segmenting images with weak edges. In order to mitigate the adverse effects of non-uniformity while preserving the details of the image on image segmentation, a novel approach is introduced: the adaptive fractional differential active contour image segmentation method. This method aims to address the aforementioned problem. Our methods adaptively define the fractional order using the proposed entropy, which enhances the edge extraction ability of image entropy in the presence of image intensity inhomogeneity and noise, different orders are applied to different pixels. The introduced entropy demonstrates resilience against significant noise, thereby enhancing the model’s capacity to accurately and seamlessly delineate boundaries. Empirical evaluations conducted on various test images substantiate the model’s efficacy in addressing intensity inhomogeneity and achieving exceptional segmentation accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信