{"title":"SUGrasping:基于多头 3D U-Net 的语义抓取框架","authors":"He Cao, Yunzhou Zhang, Zhexue Ge, Xin Chen, Xiaozheng Liu, Jiaqi Zhao","doi":"10.1007/s11042-024-20037-w","DOIUrl":null,"url":null,"abstract":"<p>Object grasping is an important skill for robots to interact with the real world, especially in unstructured environments where occlusions and different shapes of target objects are present. In this work, we introduce a robot grasping pipeline called SUGrasping, which can obtain the grasping poses more precisely for target objects. The grasping pipeline treats the Truncated Signed Distance Function (TSDF) and point clouds of the grasping scene as input simultaneously. The proposed multi-head 3D U-Net accepts reconstructed TSDF representation and outputs the grasping configurations, including predicted grasp quality, orientation and width of the gripper. The point cloud is fed into PointNet to obtain the semantic segmentation results for all objects in the grasping workspace. With the help of point cloud inside the gripper, the relationship between the gripper and semantic information can be established. It makes robots know which object they are grasping, rather than just removing objects in the workspace like previous works. Experimental results show that the proposed method has an improvement in grasping success rate and percent cleared of target objects, which outperforms state-of-the-art methods compared in this paper.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUGrasping: a semantic grasping framework based on multi-head 3D U-Net\",\"authors\":\"He Cao, Yunzhou Zhang, Zhexue Ge, Xin Chen, Xiaozheng Liu, Jiaqi Zhao\",\"doi\":\"10.1007/s11042-024-20037-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Object grasping is an important skill for robots to interact with the real world, especially in unstructured environments where occlusions and different shapes of target objects are present. In this work, we introduce a robot grasping pipeline called SUGrasping, which can obtain the grasping poses more precisely for target objects. The grasping pipeline treats the Truncated Signed Distance Function (TSDF) and point clouds of the grasping scene as input simultaneously. The proposed multi-head 3D U-Net accepts reconstructed TSDF representation and outputs the grasping configurations, including predicted grasp quality, orientation and width of the gripper. The point cloud is fed into PointNet to obtain the semantic segmentation results for all objects in the grasping workspace. With the help of point cloud inside the gripper, the relationship between the gripper and semantic information can be established. It makes robots know which object they are grasping, rather than just removing objects in the workspace like previous works. Experimental results show that the proposed method has an improvement in grasping success rate and percent cleared of target objects, which outperforms state-of-the-art methods compared in this paper.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20037-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20037-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
物体抓取是机器人与现实世界交互的一项重要技能,尤其是在目标物体存在遮挡物和不同形状的非结构化环境中。在这项工作中,我们介绍了一种名为 SUGrasping 的机器人抓取管道,它可以更精确地获取目标物体的抓取姿势。该抓取流水线同时将截断符号距离函数(TSDF)和抓取场景的点云作为输入。建议的多头 3D U-Net 接受重建的 TSDF 表示并输出抓取配置,包括预测的抓取质量、抓手的方向和宽度。点云被输入 PointNet,以获得抓取工作区中所有物体的语义分割结果。在抓手内部点云的帮助下,可以建立抓手与语义信息之间的关系。它能让机器人知道自己正在抓取哪个物体,而不是像以前的作品那样,只是删除工作区中的物体。实验结果表明,所提出的方法提高了抓取成功率和目标物体的清除率,优于本文所比较的最先进方法。
SUGrasping: a semantic grasping framework based on multi-head 3D U-Net
Object grasping is an important skill for robots to interact with the real world, especially in unstructured environments where occlusions and different shapes of target objects are present. In this work, we introduce a robot grasping pipeline called SUGrasping, which can obtain the grasping poses more precisely for target objects. The grasping pipeline treats the Truncated Signed Distance Function (TSDF) and point clouds of the grasping scene as input simultaneously. The proposed multi-head 3D U-Net accepts reconstructed TSDF representation and outputs the grasping configurations, including predicted grasp quality, orientation and width of the gripper. The point cloud is fed into PointNet to obtain the semantic segmentation results for all objects in the grasping workspace. With the help of point cloud inside the gripper, the relationship between the gripper and semantic information can be established. It makes robots know which object they are grasping, rather than just removing objects in the workspace like previous works. Experimental results show that the proposed method has an improvement in grasping success rate and percent cleared of target objects, which outperforms state-of-the-art methods compared in this paper.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms