{"title":"使用新型 BRetN 和 TCK-LSTM 技术高效检测液态金属管道中的裂缝并进行泄漏监测","authors":"Praveen Sankarasubramanian","doi":"10.1007/s11042-024-20170-6","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, the pipeline system has the safest, most economical, and most efficient means of transporting petroleum products and other chemical fluids. But, the faults in pipelines cause resource wastage and environmental pollution. Most of the existing works focused either on the surface Crack Detection (CD) or Leakage Detection (LD) of pipes with limited features. Hence, efficient crack detection and leakage monitoring are proposed based on the Acoustic Emission (AE) signal and AE image features using a new Berout Retina Net (BRetN) and Tent Chaotic Kaiming-centric Long Short Term Memory (TCK-LSTM) methodologies. The process initiates from the gathering of input data, followed by preprocessing. Then, the cracks are detected by utilizing Berout Retina Net (BRetN), and the features of AE signals are retrieved. On the other hand, the AE signal is transformed into an AE image using Continuous Wavelet Transform (CWT). Further, the AE image features are extracted, followed by the integration of both the AE signal and AE image features. Further, the optimal features are chosen by using Gorilla Troops Optimizer (GTO). Eventually, the TCK-LSTM model is used for detecting the leakage level of the pipeline. The experimental outcomes illustrated that the proposed framework detected crack and leakage levels with 98.14% accuracy, 95.37% precision, and 98.84% specificity when analogizing over the existing techniques.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient crack detection and leakage monitoring in liquid metal pipelines using a novel BRetN and TCK-LSTM techniques\",\"authors\":\"Praveen Sankarasubramanian\",\"doi\":\"10.1007/s11042-024-20170-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, the pipeline system has the safest, most economical, and most efficient means of transporting petroleum products and other chemical fluids. But, the faults in pipelines cause resource wastage and environmental pollution. Most of the existing works focused either on the surface Crack Detection (CD) or Leakage Detection (LD) of pipes with limited features. Hence, efficient crack detection and leakage monitoring are proposed based on the Acoustic Emission (AE) signal and AE image features using a new Berout Retina Net (BRetN) and Tent Chaotic Kaiming-centric Long Short Term Memory (TCK-LSTM) methodologies. The process initiates from the gathering of input data, followed by preprocessing. Then, the cracks are detected by utilizing Berout Retina Net (BRetN), and the features of AE signals are retrieved. On the other hand, the AE signal is transformed into an AE image using Continuous Wavelet Transform (CWT). Further, the AE image features are extracted, followed by the integration of both the AE signal and AE image features. Further, the optimal features are chosen by using Gorilla Troops Optimizer (GTO). Eventually, the TCK-LSTM model is used for detecting the leakage level of the pipeline. The experimental outcomes illustrated that the proposed framework detected crack and leakage levels with 98.14% accuracy, 95.37% precision, and 98.84% specificity when analogizing over the existing techniques.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20170-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20170-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An efficient crack detection and leakage monitoring in liquid metal pipelines using a novel BRetN and TCK-LSTM techniques
Nowadays, the pipeline system has the safest, most economical, and most efficient means of transporting petroleum products and other chemical fluids. But, the faults in pipelines cause resource wastage and environmental pollution. Most of the existing works focused either on the surface Crack Detection (CD) or Leakage Detection (LD) of pipes with limited features. Hence, efficient crack detection and leakage monitoring are proposed based on the Acoustic Emission (AE) signal and AE image features using a new Berout Retina Net (BRetN) and Tent Chaotic Kaiming-centric Long Short Term Memory (TCK-LSTM) methodologies. The process initiates from the gathering of input data, followed by preprocessing. Then, the cracks are detected by utilizing Berout Retina Net (BRetN), and the features of AE signals are retrieved. On the other hand, the AE signal is transformed into an AE image using Continuous Wavelet Transform (CWT). Further, the AE image features are extracted, followed by the integration of both the AE signal and AE image features. Further, the optimal features are chosen by using Gorilla Troops Optimizer (GTO). Eventually, the TCK-LSTM model is used for detecting the leakage level of the pipeline. The experimental outcomes illustrated that the proposed framework detected crack and leakage levels with 98.14% accuracy, 95.37% precision, and 98.84% specificity when analogizing over the existing techniques.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms