{"title":"优化蜂窝网络拥塞控制协议,提高服务质量","authors":"Sandhya S. V, S. M. Joshi","doi":"10.1007/s11042-024-20126-w","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, Cellular Networks (CN) have been used broadly in communication technologies. The most critical challenge in the CN was congestion control due to the distributed mobile environment. Some approaches, like mobile edge computing, congesting controlling systems, machine learning, and heuristic models, have failed to prevent congestion in CN. The reason for this problem is the lack of continuous monitoring function at every time interval. So, in this present study, a novel Golden Eagle-based Primal–dual Congestion Management (GEbPDCM) has been developed for the Long-Term Evolution (LTE) Ad hoc On-demand Vector (AODV) network. Here, the Golden Eagle function features will afford the continuous monitoring function to monitor data congestion. Hence, the main objective of this research is to improve the Quality of service (QoS) by optimizing congestion controls. Here, the QoS is measured by different metrics, such as delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. Initially, the nodes were created in the MATLAB environment, and the GEbPDCM was activated to predict the data load and estimate the node density to measure the node status. Then, the high data overload was migrated to another free status node to control congestion. Finally, the proposed model efficiency was measured regarding delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. The proposed model has scored high throughput at 97.1 Mbps and 97.1 PDR, reducing delay to 67.4 ms and 50.6 mJ energy consumption. Hence, the present model is suitable for the LTE network.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized congestion control protocol in cellular network for improving quality of service\",\"authors\":\"Sandhya S. V, S. M. Joshi\",\"doi\":\"10.1007/s11042-024-20126-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent decades, Cellular Networks (CN) have been used broadly in communication technologies. The most critical challenge in the CN was congestion control due to the distributed mobile environment. Some approaches, like mobile edge computing, congesting controlling systems, machine learning, and heuristic models, have failed to prevent congestion in CN. The reason for this problem is the lack of continuous monitoring function at every time interval. So, in this present study, a novel Golden Eagle-based Primal–dual Congestion Management (GEbPDCM) has been developed for the Long-Term Evolution (LTE) Ad hoc On-demand Vector (AODV) network. Here, the Golden Eagle function features will afford the continuous monitoring function to monitor data congestion. Hence, the main objective of this research is to improve the Quality of service (QoS) by optimizing congestion controls. Here, the QoS is measured by different metrics, such as delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. Initially, the nodes were created in the MATLAB environment, and the GEbPDCM was activated to predict the data load and estimate the node density to measure the node status. Then, the high data overload was migrated to another free status node to control congestion. Finally, the proposed model efficiency was measured regarding delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. The proposed model has scored high throughput at 97.1 Mbps and 97.1 PDR, reducing delay to 67.4 ms and 50.6 mJ energy consumption. Hence, the present model is suitable for the LTE network.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20126-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20126-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An optimized congestion control protocol in cellular network for improving quality of service
In recent decades, Cellular Networks (CN) have been used broadly in communication technologies. The most critical challenge in the CN was congestion control due to the distributed mobile environment. Some approaches, like mobile edge computing, congesting controlling systems, machine learning, and heuristic models, have failed to prevent congestion in CN. The reason for this problem is the lack of continuous monitoring function at every time interval. So, in this present study, a novel Golden Eagle-based Primal–dual Congestion Management (GEbPDCM) has been developed for the Long-Term Evolution (LTE) Ad hoc On-demand Vector (AODV) network. Here, the Golden Eagle function features will afford the continuous monitoring function to monitor data congestion. Hence, the main objective of this research is to improve the Quality of service (QoS) by optimizing congestion controls. Here, the QoS is measured by different metrics, such as delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. Initially, the nodes were created in the MATLAB environment, and the GEbPDCM was activated to predict the data load and estimate the node density to measure the node status. Then, the high data overload was migrated to another free status node to control congestion. Finally, the proposed model efficiency was measured regarding delay, packet delivery ratio (PDR), throughput, packet loss, and energy consumption. The proposed model has scored high throughput at 97.1 Mbps and 97.1 PDR, reducing delay to 67.4 ms and 50.6 mJ energy consumption. Hence, the present model is suitable for the LTE network.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms