DES-YOLO:用于实时检测铸件表面缺陷的新型模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chengjun Wang, Jiaqi Hu, Chaoyu Yang, Peng Hu
{"title":"DES-YOLO:用于实时检测铸件表面缺陷的新型模型","authors":"Chengjun Wang, Jiaqi Hu, Chaoyu Yang, Peng Hu","doi":"10.7717/peerj-cs.2224","DOIUrl":null,"url":null,"abstract":"Surface defect inspection methods have proven effective in addressing casting quality control tasks. However, traditional inspection methods often struggle to achieve high-precision detection of surface defects in castings with similar characteristics and minor scales. The study introduces DES-YOLO, a novel real-time method for detecting castings’ surface defects. In the DES-YOLO model, we incorporate the DSC-Darknet backbone network and global attention mechanism (GAM) module to enhance the identification of defect target features. These additions are essential for overcoming the challenge posed by the high similarity among defect characteristics, such as shrinkage holes and slag holes, which can result in decreased detection accuracy. An enhanced pyramid pooling module is also introduced to improve feature representation for small defective parts through multi-layer pooling. We integrate Slim-Neck and SIoU bounding box regression loss functions for real-time detection in actual production scenarios. These functions reduce memory overhead and enable real-time detection of surface defects in castings. Experimental findings demonstrate that the DES-YOLO model achieves a mean average precision (mAP) of 92.6% on the CSD-DET dataset and a single-image inference speed of 3.9 milliseconds. The proposed method proves capable of swiftly and accurately accomplishing real-time detection of surface defects in castings.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DES-YOLO: a novel model for real-time detection of casting surface defects\",\"authors\":\"Chengjun Wang, Jiaqi Hu, Chaoyu Yang, Peng Hu\",\"doi\":\"10.7717/peerj-cs.2224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface defect inspection methods have proven effective in addressing casting quality control tasks. However, traditional inspection methods often struggle to achieve high-precision detection of surface defects in castings with similar characteristics and minor scales. The study introduces DES-YOLO, a novel real-time method for detecting castings’ surface defects. In the DES-YOLO model, we incorporate the DSC-Darknet backbone network and global attention mechanism (GAM) module to enhance the identification of defect target features. These additions are essential for overcoming the challenge posed by the high similarity among defect characteristics, such as shrinkage holes and slag holes, which can result in decreased detection accuracy. An enhanced pyramid pooling module is also introduced to improve feature representation for small defective parts through multi-layer pooling. We integrate Slim-Neck and SIoU bounding box regression loss functions for real-time detection in actual production scenarios. These functions reduce memory overhead and enable real-time detection of surface defects in castings. Experimental findings demonstrate that the DES-YOLO model achieves a mean average precision (mAP) of 92.6% on the CSD-DET dataset and a single-image inference speed of 3.9 milliseconds. The proposed method proves capable of swiftly and accurately accomplishing real-time detection of surface defects in castings.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2224\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2224","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,表面缺陷检测方法可有效解决铸件质量控制任务。然而,传统的检测方法往往难以对具有相似特征和微小尺度的铸件表面缺陷进行高精度检测。本研究介绍了一种用于检测铸件表面缺陷的新型实时方法 DES-YOLO。在 DES-YOLO 模型中,我们加入了 DSC-Darknet 骨干网络和全局关注机制 (GAM) 模块,以增强对缺陷目标特征的识别。这些新增功能对于克服缩孔和渣孔等缺陷特征之间的高度相似性所带来的挑战至关重要,因为这种相似性可能导致检测精度降低。此外,我们还引入了增强型金字塔汇集模块,通过多层汇集来改进小型缺陷部件的特征表示。我们集成了 Slim-Neck 和 SIoU 边框回归损失函数,以便在实际生产场景中进行实时检测。这些函数降低了内存开销,实现了铸件表面缺陷的实时检测。实验结果表明,DES-YOLO 模型在 CSD-DET 数据集上的平均精度 (mAP) 达到 92.6%,单图像推理速度为 3.9 毫秒。事实证明,所提出的方法能够快速、准确地完成铸件表面缺陷的实时检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DES-YOLO: a novel model for real-time detection of casting surface defects
Surface defect inspection methods have proven effective in addressing casting quality control tasks. However, traditional inspection methods often struggle to achieve high-precision detection of surface defects in castings with similar characteristics and minor scales. The study introduces DES-YOLO, a novel real-time method for detecting castings’ surface defects. In the DES-YOLO model, we incorporate the DSC-Darknet backbone network and global attention mechanism (GAM) module to enhance the identification of defect target features. These additions are essential for overcoming the challenge posed by the high similarity among defect characteristics, such as shrinkage holes and slag holes, which can result in decreased detection accuracy. An enhanced pyramid pooling module is also introduced to improve feature representation for small defective parts through multi-layer pooling. We integrate Slim-Neck and SIoU bounding box regression loss functions for real-time detection in actual production scenarios. These functions reduce memory overhead and enable real-time detection of surface defects in castings. Experimental findings demonstrate that the DES-YOLO model achieves a mean average precision (mAP) of 92.6% on the CSD-DET dataset and a single-image inference speed of 3.9 milliseconds. The proposed method proves capable of swiftly and accurately accomplishing real-time detection of surface defects in castings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信