Davide Chicco, Angeliki-Ilektra Karaiskou, Maarten De Vos
{"title":"心电图 (ECG) 信号处理的十个快速提示","authors":"Davide Chicco, Angeliki-Ilektra Karaiskou, Maarten De Vos","doi":"10.7717/peerj-cs.2295","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) is a powerful tool to measure the electrical activity of the heart, and the analysis of its data can be useful to assess the patient’s health. In particular, the computational analysis of electrocardiogram data, also called ECG signal processing, can reveal specific patterns or heart cycle trends which otherwise would be unnoticeable by medical experts. When performing ECG signal processing, however, it is easy to make mistakes and generate inflated, overoptimistic, or misleading results, which can lead to wrong diagnoses or prognoses and, in turn, could even contribute to bad medical decisions, damaging the health of the patient. Therefore, to avoid common mistakes and bad practices, we present here ten easy guidelines to follow when analyzing electrocardiogram data computationally. Our ten recommendations, written in a simple way, can be useful to anyone performing a computational study based on ECG data and eventually lead to better, more robust medical results.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ten quick tips for electrocardiogram (ECG) signal processing\",\"authors\":\"Davide Chicco, Angeliki-Ilektra Karaiskou, Maarten De Vos\",\"doi\":\"10.7717/peerj-cs.2295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocardiogram (ECG) is a powerful tool to measure the electrical activity of the heart, and the analysis of its data can be useful to assess the patient’s health. In particular, the computational analysis of electrocardiogram data, also called ECG signal processing, can reveal specific patterns or heart cycle trends which otherwise would be unnoticeable by medical experts. When performing ECG signal processing, however, it is easy to make mistakes and generate inflated, overoptimistic, or misleading results, which can lead to wrong diagnoses or prognoses and, in turn, could even contribute to bad medical decisions, damaging the health of the patient. Therefore, to avoid common mistakes and bad practices, we present here ten easy guidelines to follow when analyzing electrocardiogram data computationally. Our ten recommendations, written in a simple way, can be useful to anyone performing a computational study based on ECG data and eventually lead to better, more robust medical results.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2295\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2295","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ten quick tips for electrocardiogram (ECG) signal processing
The electrocardiogram (ECG) is a powerful tool to measure the electrical activity of the heart, and the analysis of its data can be useful to assess the patient’s health. In particular, the computational analysis of electrocardiogram data, also called ECG signal processing, can reveal specific patterns or heart cycle trends which otherwise would be unnoticeable by medical experts. When performing ECG signal processing, however, it is easy to make mistakes and generate inflated, overoptimistic, or misleading results, which can lead to wrong diagnoses or prognoses and, in turn, could even contribute to bad medical decisions, damaging the health of the patient. Therefore, to avoid common mistakes and bad practices, we present here ten easy guidelines to follow when analyzing electrocardiogram data computationally. Our ten recommendations, written in a simple way, can be useful to anyone performing a computational study based on ECG data and eventually lead to better, more robust medical results.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.