{"title":"医学图像处理机器学习中训练和测试比例的权衡","authors":"Muthuramalingam Sivakumar, Sudhaman Parthasarathy, Thiyagarajan Padmapriya","doi":"10.7717/peerj-cs.2245","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) and machine learning (ML) aim to mimic human intelligence and enhance decision making processes across various fields. A key performance determinant in a ML model is the ratio between the training and testing dataset. This research investigates the impact of varying train-test split ratios on machine learning model performance and generalization capabilities using the BraTS 2013 dataset. Logistic regression, random forest, k nearest neighbors, and support vector machines were trained with split ratios ranging from 60:40 to 95:05. Findings reveal significant variations in accuracies across these ratios, emphasizing the critical need to strike a balance to avoid overfitting or underfitting. The study underscores the importance of selecting an optimal train-test split ratio that considers tradeoffs such as model performance metrics, statistical measures, and resource constraints. Ultimately, these insights contribute to a deeper understanding of how ratio selection impacts the effectiveness and reliability of machine learning applications across diverse fields.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"19 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trade-off between training and testing ratio in machine learning for medical image processing\",\"authors\":\"Muthuramalingam Sivakumar, Sudhaman Parthasarathy, Thiyagarajan Padmapriya\",\"doi\":\"10.7717/peerj-cs.2245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) and machine learning (ML) aim to mimic human intelligence and enhance decision making processes across various fields. A key performance determinant in a ML model is the ratio between the training and testing dataset. This research investigates the impact of varying train-test split ratios on machine learning model performance and generalization capabilities using the BraTS 2013 dataset. Logistic regression, random forest, k nearest neighbors, and support vector machines were trained with split ratios ranging from 60:40 to 95:05. Findings reveal significant variations in accuracies across these ratios, emphasizing the critical need to strike a balance to avoid overfitting or underfitting. The study underscores the importance of selecting an optimal train-test split ratio that considers tradeoffs such as model performance metrics, statistical measures, and resource constraints. Ultimately, these insights contribute to a deeper understanding of how ratio selection impacts the effectiveness and reliability of machine learning applications across diverse fields.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2245\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2245","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
人工智能(AI)和机器学习(ML)旨在模仿人类智能,增强各领域的决策过程。决定 ML 模型性能的一个关键因素是训练数据集和测试数据集之间的比例。本研究使用 BraTS 2013 数据集研究了不同的训练-测试分割比例对机器学习模型性能和泛化能力的影响。对逻辑回归、随机森林、k 近邻和支持向量机进行了训练,拆分比例从 60:40 到 95:05。研究结果表明,不同比例下的准确率差异很大,这强调了在避免过度拟合或拟合不足方面取得平衡的重要性。这项研究强调了选择最佳训练-测试分割比例的重要性,该比例应考虑到模型性能指标、统计量和资源限制等权衡因素。最终,这些见解有助于深入理解比率选择如何影响不同领域机器学习应用的有效性和可靠性。
Trade-off between training and testing ratio in machine learning for medical image processing
Artificial intelligence (AI) and machine learning (ML) aim to mimic human intelligence and enhance decision making processes across various fields. A key performance determinant in a ML model is the ratio between the training and testing dataset. This research investigates the impact of varying train-test split ratios on machine learning model performance and generalization capabilities using the BraTS 2013 dataset. Logistic regression, random forest, k nearest neighbors, and support vector machines were trained with split ratios ranging from 60:40 to 95:05. Findings reveal significant variations in accuracies across these ratios, emphasizing the critical need to strike a balance to avoid overfitting or underfitting. The study underscores the importance of selecting an optimal train-test split ratio that considers tradeoffs such as model performance metrics, statistical measures, and resource constraints. Ultimately, these insights contribute to a deeper understanding of how ratio selection impacts the effectiveness and reliability of machine learning applications across diverse fields.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.