{"title":"Bio-Rollup:基于双层可扩展性区块链的新型生物识别隐私保护解决方案","authors":"Jian Yun, Yusheng Lu, Xinyang Liu, Jingdan Guan","doi":"10.7717/peerj-cs.2268","DOIUrl":null,"url":null,"abstract":"The increased use of artificial intelligence generated content (AIGC) among vast user populations has heightened the risk of private data leaks. Effective auditing and regulation remain challenging, further compounding the risks associated with the leaks involving model parameters and user data. Blockchain technology, renowned for its decentralized consensus mechanism and tamper-resistant properties, is emerging as an ideal tool for documenting, auditing, and analyzing the behaviors of all stakeholders in machine learning as a service (MLaaS). This study centers on biometric recognition systems, addressing pressing privacy and security concerns through innovative endeavors. We conducted experiments to analyze six distinct deep neural networks, leveraging a dataset quality metric grounded in the query output space to quantify the value of the transfer datasets. This analysis revealed the impact of imbalanced datasets on training accuracy, thereby bolstering the system’s capacity to detect model data thefts. Furthermore, we designed and implemented a novel Bio-Rollup scheme, seamlessly integrating technologies such as certificate authority, blockchain layer two scaling, and zero-knowledge proofs. This innovative scheme facilitates lightweight auditing through Merkle proofs, enhancing efficiency while minimizing blockchain storage requirements. Compared to the baseline approach, Bio-Rollup restores the integrity of the biometric system and simplifies deployment procedures. It effectively prevents unauthorized use through certificate authorization and zero-knowledge proofs, thus safeguarding user privacy and offering a passive defense against model stealing attacks.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"60 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-Rollup: a new privacy protection solution for biometrics based on two-layer scalability-focused blockchain\",\"authors\":\"Jian Yun, Yusheng Lu, Xinyang Liu, Jingdan Guan\",\"doi\":\"10.7717/peerj-cs.2268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased use of artificial intelligence generated content (AIGC) among vast user populations has heightened the risk of private data leaks. Effective auditing and regulation remain challenging, further compounding the risks associated with the leaks involving model parameters and user data. Blockchain technology, renowned for its decentralized consensus mechanism and tamper-resistant properties, is emerging as an ideal tool for documenting, auditing, and analyzing the behaviors of all stakeholders in machine learning as a service (MLaaS). This study centers on biometric recognition systems, addressing pressing privacy and security concerns through innovative endeavors. We conducted experiments to analyze six distinct deep neural networks, leveraging a dataset quality metric grounded in the query output space to quantify the value of the transfer datasets. This analysis revealed the impact of imbalanced datasets on training accuracy, thereby bolstering the system’s capacity to detect model data thefts. Furthermore, we designed and implemented a novel Bio-Rollup scheme, seamlessly integrating technologies such as certificate authority, blockchain layer two scaling, and zero-knowledge proofs. This innovative scheme facilitates lightweight auditing through Merkle proofs, enhancing efficiency while minimizing blockchain storage requirements. Compared to the baseline approach, Bio-Rollup restores the integrity of the biometric system and simplifies deployment procedures. It effectively prevents unauthorized use through certificate authorization and zero-knowledge proofs, thus safeguarding user privacy and offering a passive defense against model stealing attacks.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2268\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2268","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bio-Rollup: a new privacy protection solution for biometrics based on two-layer scalability-focused blockchain
The increased use of artificial intelligence generated content (AIGC) among vast user populations has heightened the risk of private data leaks. Effective auditing and regulation remain challenging, further compounding the risks associated with the leaks involving model parameters and user data. Blockchain technology, renowned for its decentralized consensus mechanism and tamper-resistant properties, is emerging as an ideal tool for documenting, auditing, and analyzing the behaviors of all stakeholders in machine learning as a service (MLaaS). This study centers on biometric recognition systems, addressing pressing privacy and security concerns through innovative endeavors. We conducted experiments to analyze six distinct deep neural networks, leveraging a dataset quality metric grounded in the query output space to quantify the value of the transfer datasets. This analysis revealed the impact of imbalanced datasets on training accuracy, thereby bolstering the system’s capacity to detect model data thefts. Furthermore, we designed and implemented a novel Bio-Rollup scheme, seamlessly integrating technologies such as certificate authority, blockchain layer two scaling, and zero-knowledge proofs. This innovative scheme facilitates lightweight auditing through Merkle proofs, enhancing efficiency while minimizing blockchain storage requirements. Compared to the baseline approach, Bio-Rollup restores the integrity of the biometric system and simplifies deployment procedures. It effectively prevents unauthorized use through certificate authorization and zero-knowledge proofs, thus safeguarding user privacy and offering a passive defense against model stealing attacks.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.