{"title":"软物质物理学中具有二次锚定的两相复杂流体的全局解决方案","authors":"Giulia Bevilacqua, Andrea Giorgini","doi":"10.1137/23m1608902","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6057-6120, October 2024. <br/> Abstract. We study a diffuse interface model describing the complex rheology and the interfacial dynamics during phase separation in a polar liquid-crystalline emulsion. More precisely, the physical systems comprises a two-phase mixture consisting of a polar liquid crystal immersed in a Newtonian fluid. Such composite material is a paradigmatic example of complex fluids arising in Soft Matter which exhibits multiscale interplay. Beyond the Ginzburg–Landau and Frank elastic energies for the concentration and the polarization, the free energy of the system is characterized by a quadratic anchoring term which tunes the orientation of the polarization at the interface. This leads to several quasi-linear nonlinear couplings in the resulting system describing the macroscopic dynamics. In this work, we establish the first mathematical results concerning the global dynamics of two-phase complex fluids with interfacial anchoring mechanism. First, we determine a set of sufficient conditions on the parameters of the system and the initial conditions which guarantee the existence of global weak solutions in two and three dimensions. Second, we show that weak solutions are unique and globally regular in the two dimensional case. Finally, we complement our analysis with some numerical simulations to display polarization and interfacial anchoring.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Solutions for Two-Phase Complex Fluids with Quadratic Anchoring in Soft Matter Physics\",\"authors\":\"Giulia Bevilacqua, Andrea Giorgini\",\"doi\":\"10.1137/23m1608902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6057-6120, October 2024. <br/> Abstract. We study a diffuse interface model describing the complex rheology and the interfacial dynamics during phase separation in a polar liquid-crystalline emulsion. More precisely, the physical systems comprises a two-phase mixture consisting of a polar liquid crystal immersed in a Newtonian fluid. Such composite material is a paradigmatic example of complex fluids arising in Soft Matter which exhibits multiscale interplay. Beyond the Ginzburg–Landau and Frank elastic energies for the concentration and the polarization, the free energy of the system is characterized by a quadratic anchoring term which tunes the orientation of the polarization at the interface. This leads to several quasi-linear nonlinear couplings in the resulting system describing the macroscopic dynamics. In this work, we establish the first mathematical results concerning the global dynamics of two-phase complex fluids with interfacial anchoring mechanism. First, we determine a set of sufficient conditions on the parameters of the system and the initial conditions which guarantee the existence of global weak solutions in two and three dimensions. Second, we show that weak solutions are unique and globally regular in the two dimensional case. Finally, we complement our analysis with some numerical simulations to display polarization and interfacial anchoring.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1608902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1608902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global Solutions for Two-Phase Complex Fluids with Quadratic Anchoring in Soft Matter Physics
SIAM Journal on Mathematical Analysis, Volume 56, Issue 5, Page 6057-6120, October 2024. Abstract. We study a diffuse interface model describing the complex rheology and the interfacial dynamics during phase separation in a polar liquid-crystalline emulsion. More precisely, the physical systems comprises a two-phase mixture consisting of a polar liquid crystal immersed in a Newtonian fluid. Such composite material is a paradigmatic example of complex fluids arising in Soft Matter which exhibits multiscale interplay. Beyond the Ginzburg–Landau and Frank elastic energies for the concentration and the polarization, the free energy of the system is characterized by a quadratic anchoring term which tunes the orientation of the polarization at the interface. This leads to several quasi-linear nonlinear couplings in the resulting system describing the macroscopic dynamics. In this work, we establish the first mathematical results concerning the global dynamics of two-phase complex fluids with interfacial anchoring mechanism. First, we determine a set of sufficient conditions on the parameters of the system and the initial conditions which guarantee the existence of global weak solutions in two and three dimensions. Second, we show that weak solutions are unique and globally regular in the two dimensional case. Finally, we complement our analysis with some numerical simulations to display polarization and interfacial anchoring.
期刊介绍:
SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena.
Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere.
Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.