{"title":"使用 EfficientDet 和 YOLOv8 的集合进行车辆检测和分类","authors":"Caixia Lv, Usha Mittal, Vishu Madaan, Prateek Agrawal","doi":"10.7717/peerj-cs.2233","DOIUrl":null,"url":null,"abstract":"With the rapid increase in vehicle numbers, efficient traffic management has become a critical challenge for society. Traditional methods of vehicle detection and classification often struggle with the diverse characteristics of vehicles, such as varying shapes, colors, edges, shadows, and textures. To address this, we proposed an innovative ensemble method that combines two state-of-the-art deep learning models i.e., EfficientDet and YOLOv8. The proposed work leverages data from the Forward-Looking Infrared (FLIR) dataset, which provides both thermal and RGB images. To enhance the model performance and to address the class imbalances, we applied several data augmentation techniques. Experimental results demonstrate that the proposed ensemble model achieves a mean average precision (mAP) of 95.5% on thermal images, outperforming the individual performances of EfficientDet and YOLOv8, which achieved mAPs of 92.6% and 89.4% respectively. Additionally, the ensemble model attained an average recall (AR) of 0.93 and an optimal localization recall precision (oLRP) of 0.08 on thermal images. For RGB images, the ensemble model achieved mAP of 93.1%, AR of 0.91, and oLRP of 0.10, consistently surpassing the performance of its constituent models. These findings highlight the effectiveness of proposed ensemble approach in improving vehicle detection and classification. The integration of thermal imaging further enhances detection capabilities under various lighting conditions, making the system robust for real-world applications in intelligent traffic management.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8\",\"authors\":\"Caixia Lv, Usha Mittal, Vishu Madaan, Prateek Agrawal\",\"doi\":\"10.7717/peerj-cs.2233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid increase in vehicle numbers, efficient traffic management has become a critical challenge for society. Traditional methods of vehicle detection and classification often struggle with the diverse characteristics of vehicles, such as varying shapes, colors, edges, shadows, and textures. To address this, we proposed an innovative ensemble method that combines two state-of-the-art deep learning models i.e., EfficientDet and YOLOv8. The proposed work leverages data from the Forward-Looking Infrared (FLIR) dataset, which provides both thermal and RGB images. To enhance the model performance and to address the class imbalances, we applied several data augmentation techniques. Experimental results demonstrate that the proposed ensemble model achieves a mean average precision (mAP) of 95.5% on thermal images, outperforming the individual performances of EfficientDet and YOLOv8, which achieved mAPs of 92.6% and 89.4% respectively. Additionally, the ensemble model attained an average recall (AR) of 0.93 and an optimal localization recall precision (oLRP) of 0.08 on thermal images. For RGB images, the ensemble model achieved mAP of 93.1%, AR of 0.91, and oLRP of 0.10, consistently surpassing the performance of its constituent models. These findings highlight the effectiveness of proposed ensemble approach in improving vehicle detection and classification. The integration of thermal imaging further enhances detection capabilities under various lighting conditions, making the system robust for real-world applications in intelligent traffic management.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2233\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8
With the rapid increase in vehicle numbers, efficient traffic management has become a critical challenge for society. Traditional methods of vehicle detection and classification often struggle with the diverse characteristics of vehicles, such as varying shapes, colors, edges, shadows, and textures. To address this, we proposed an innovative ensemble method that combines two state-of-the-art deep learning models i.e., EfficientDet and YOLOv8. The proposed work leverages data from the Forward-Looking Infrared (FLIR) dataset, which provides both thermal and RGB images. To enhance the model performance and to address the class imbalances, we applied several data augmentation techniques. Experimental results demonstrate that the proposed ensemble model achieves a mean average precision (mAP) of 95.5% on thermal images, outperforming the individual performances of EfficientDet and YOLOv8, which achieved mAPs of 92.6% and 89.4% respectively. Additionally, the ensemble model attained an average recall (AR) of 0.93 and an optimal localization recall precision (oLRP) of 0.08 on thermal images. For RGB images, the ensemble model achieved mAP of 93.1%, AR of 0.91, and oLRP of 0.10, consistently surpassing the performance of its constituent models. These findings highlight the effectiveness of proposed ensemble approach in improving vehicle detection and classification. The integration of thermal imaging further enhances detection capabilities under various lighting conditions, making the system robust for real-world applications in intelligent traffic management.