{"title":"球面中嵌入最小超曲面的改进特征值估计","authors":"Jonah A J Duncan, Yannick Sire, Joel Spruck","doi":"10.1093/imrn/rnae154","DOIUrl":null,"url":null,"abstract":"Suppose that $\\Sigma ^{n}\\subset \\mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\\lambda _{1}$ of the induced Laplace–Beltrami operator on $\\Sigma $ satisfies $\\lambda _{1} \\geq \\frac{n}{2}+ a_{n}(\\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\\Lambda $ is an upper bound for the length of the second fundamental form of $\\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\\lambda _{1} \\geq \\frac{n}{2}$ without any further assumptions on $\\Sigma $.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Eigenvalue Estimate for Embedded Minimal Hypersurfaces in the Sphere\",\"authors\":\"Jonah A J Duncan, Yannick Sire, Joel Spruck\",\"doi\":\"10.1093/imrn/rnae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that $\\\\Sigma ^{n}\\\\subset \\\\mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\\\\lambda _{1}$ of the induced Laplace–Beltrami operator on $\\\\Sigma $ satisfies $\\\\lambda _{1} \\\\geq \\\\frac{n}{2}+ a_{n}(\\\\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\\\\Lambda $ is an upper bound for the length of the second fundamental form of $\\\\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\\\\lambda _{1} \\\\geq \\\\frac{n}{2}$ without any further assumptions on $\\\\Sigma $.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Eigenvalue Estimate for Embedded Minimal Hypersurfaces in the Sphere
Suppose that $\Sigma ^{n}\subset \mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\lambda _{1}$ of the induced Laplace–Beltrami operator on $\Sigma $ satisfies $\lambda _{1} \geq \frac{n}{2}+ a_{n}(\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\Lambda $ is an upper bound for the length of the second fundamental form of $\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\lambda _{1} \geq \frac{n}{2}$ without any further assumptions on $\Sigma $.