球面中嵌入最小超曲面的改进特征值估计

Pub Date : 2024-08-13 DOI:10.1093/imrn/rnae154
Jonah A J Duncan, Yannick Sire, Joel Spruck
{"title":"球面中嵌入最小超曲面的改进特征值估计","authors":"Jonah A J Duncan, Yannick Sire, Joel Spruck","doi":"10.1093/imrn/rnae154","DOIUrl":null,"url":null,"abstract":"Suppose that $\\Sigma ^{n}\\subset \\mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\\lambda _{1}$ of the induced Laplace–Beltrami operator on $\\Sigma $ satisfies $\\lambda _{1} \\geq \\frac{n}{2}+ a_{n}(\\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\\Lambda $ is an upper bound for the length of the second fundamental form of $\\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\\lambda _{1} \\geq \\frac{n}{2}$ without any further assumptions on $\\Sigma $.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Eigenvalue Estimate for Embedded Minimal Hypersurfaces in the Sphere\",\"authors\":\"Jonah A J Duncan, Yannick Sire, Joel Spruck\",\"doi\":\"10.1093/imrn/rnae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that $\\\\Sigma ^{n}\\\\subset \\\\mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\\\\lambda _{1}$ of the induced Laplace–Beltrami operator on $\\\\Sigma $ satisfies $\\\\lambda _{1} \\\\geq \\\\frac{n}{2}+ a_{n}(\\\\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\\\\Lambda $ is an upper bound for the length of the second fundamental form of $\\\\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\\\\lambda _{1} \\\\geq \\\\frac{n}{2}$ without any further assumptions on $\\\\Sigma $.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $\Sigma ^{n}\subset \mathbb{S}^{n+1}$ 是一个封闭的内嵌最小超曲面。我们证明 $\Sigma $ 上的诱导拉普拉斯-贝尔特拉米算子的第一个非零特征值 $\lambda _{1}$ 满足 $\lambda _{1}.\其中 $a_{n}$ 和 $b_{n}$ 是明确的维常数,$\Lambda $ 是 $\Sigma $ 第二基本形式长度的上界。 这是对 Choi 和 Wang 的下界 $\lambda _{1} 的首次明确的可计算改进。\geq \frac{n}{2}$ 而不需要进一步假设 $\Sigma $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An Improved Eigenvalue Estimate for Embedded Minimal Hypersurfaces in the Sphere
Suppose that $\Sigma ^{n}\subset \mathbb{S}^{n+1}$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $\lambda _{1}$ of the induced Laplace–Beltrami operator on $\Sigma $ satisfies $\lambda _{1} \geq \frac{n}{2}+ a_{n}(\Lambda ^{6} + b_{n})^{-1}$, where $a_{n}$ and $b_{n}$ are explicit dimensional constants and $\Lambda $ is an upper bound for the length of the second fundamental form of $\Sigma $. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $\lambda _{1} \geq \frac{n}{2}$ without any further assumptions on $\Sigma $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信