Gompf 的软木塞和 Heegaard Floer 同源性

Pub Date : 2024-08-22 DOI:10.1093/imrn/rnae180
Irving Dai, Abhishek Mallick, Ian Zemke
{"title":"Gompf 的软木塞和 Heegaard Floer 同源性","authors":"Irving Dai, Abhishek Mallick, Ian Zemke","doi":"10.1093/imrn/rnae180","DOIUrl":null,"url":null,"abstract":"Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \\# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gompf’s Cork and Heegaard Floer Homology\",\"authors\":\"Irving Dai, Abhishek Mallick, Ian Zemke\",\"doi\":\"10.1093/imrn/rnae180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \\\\# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Gompf 证明,对于双捻结的某一族中的 $K$,燕式跟随操作会使 $K \# -K$ 上的 1/n$ 手术变成软木塞边界。我们推导出一个关于 $K$ 的一般弗洛尔理论条件,在此条件下,情况就是这样。我们的形式主义使我们能够进一步举出许多软木塞的例子,部分地回答了冈普夫的一个问题。与 Gompf 的方法不同,我们的证明并不依赖于任何封闭 4-manifold不变式或有效嵌入,而且还可以推广到其他差分变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gompf’s Cork and Heegaard Floer Homology
Gompf showed that for $K$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $K \# -K$ into a cork boundary. We derive a general Floer-theoretic condition on $K$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信