{"title":"惠特克网格的泰特同调与 GLn 通用表示的基底变化","authors":"Santosh Nadimpalli, Sabyasachi Dhar","doi":"10.1093/imrn/rnae183","DOIUrl":null,"url":null,"abstract":"Let $p$ and $l$ be two distinct odd primes, and let $n\\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\\pi _{F}$ be an integral $l$-adic generic representation of $\\mathrm{GL}_{n}(F)$, and let $\\pi _{E}$ be the base change of $\\pi _{F}$. Let $J_{l}(\\pi _{F})$ (resp. $J_{l}(\\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\\pi _{F})$ (resp. $r_{l}(\\pi _{E})$). Assuming that $l$ does not divide $|\\mathrm{GL}_{n-1}(\\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\\widehat{H}^{0}(\\mathrm{Gal}(E/F), J_{l}(\\pi _{E}))$—considered as a representation of $\\mathrm{GL}_{n}(F)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn\",\"authors\":\"Santosh Nadimpalli, Sabyasachi Dhar\",\"doi\":\"10.1093/imrn/rnae183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ and $l$ be two distinct odd primes, and let $n\\\\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\\\\pi _{F}$ be an integral $l$-adic generic representation of $\\\\mathrm{GL}_{n}(F)$, and let $\\\\pi _{E}$ be the base change of $\\\\pi _{F}$. Let $J_{l}(\\\\pi _{F})$ (resp. $J_{l}(\\\\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\\\\pi _{F})$ (resp. $r_{l}(\\\\pi _{E})$). Assuming that $l$ does not divide $|\\\\mathrm{GL}_{n-1}(\\\\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\\\\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\\\\widehat{H}^{0}(\\\\mathrm{Gal}(E/F), J_{l}(\\\\pi _{E}))$—considered as a representation of $\\\\mathrm{GL}_{n}(F)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn
Let $p$ and $l$ be two distinct odd primes, and let $n\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\pi _{F}$ be an integral $l$-adic generic representation of $\mathrm{GL}_{n}(F)$, and let $\pi _{E}$ be the base change of $\pi _{F}$. Let $J_{l}(\pi _{F})$ (resp. $J_{l}(\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\pi _{F})$ (resp. $r_{l}(\pi _{E})$). Assuming that $l$ does not divide $|\mathrm{GL}_{n-1}(\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\widehat{H}^{0}(\mathrm{Gal}(E/F), J_{l}(\pi _{E}))$—considered as a representation of $\mathrm{GL}_{n}(F)$.