{"title":"零维志村变量和爱森斯坦数列的中心衍生物","authors":"Siddarth Sankaran","doi":"10.1093/imrn/rnae179","DOIUrl":null,"url":null,"abstract":"We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Dimensional Shimura Varieties and Central Derivatives of Eisenstein Series\",\"authors\":\"Siddarth Sankaran\",\"doi\":\"10.1093/imrn/rnae179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Dimensional Shimura Varieties and Central Derivatives of Eisenstein Series
We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.