零维志村变量和爱森斯坦数列的中心衍生物

Pub Date : 2024-09-02 DOI:10.1093/imrn/rnae179
Siddarth Sankaran
{"title":"零维志村变量和爱森斯坦数列的中心衍生物","authors":"Siddarth Sankaran","doi":"10.1093/imrn/rnae179","DOIUrl":null,"url":null,"abstract":"We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Dimensional Shimura Varieties and Central Derivatives of Eisenstein Series\",\"authors\":\"Siddarth Sankaran\",\"doi\":\"10.1093/imrn/rnae179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并证明了环状(零维)席村变的算术西格尔-韦尔公式的一个版本,并配备了一些附加数据。更确切地说,我们用格林函数在阿基米德和非阿基米德位置定义了一个 "特殊 "除数族,并证明它们的度数与爱森斯坦级数中心导数的傅里叶系数重合。该证明依赖于通常的西格尔-韦尔公式,为同一性的两边提供了直接联系,并在某种意义上为文献中的先前结果提供了一个更具概念性的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Zero-Dimensional Shimura Varieties and Central Derivatives of Eisenstein Series
We formulate and prove a version of the arithmetic Siegel–Weil formula for (zero dimensional) Shimura varieties attached to tori, equipped with some additional data. More precisely, we define a family of “special” divisors in terms of Green functions at archimedean and non-archimedean places and prove that their degrees coincide with the Fourier coefficients of the central derivative of an Eisenstein series. The proof relies on the usual Siegel–Weil formula to provide a direct link between both sides of the identity, and in some sense, offers a more conceptual point of view on prior results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信