{"title":"二方行列式理想和并发顶点映射","authors":"Li Li","doi":"10.1007/s10801-024-01351-w","DOIUrl":null,"url":null,"abstract":"<p>Bipartite determinantal ideals are introduced in Illian and Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) as a vast generalization of the classical determinantal ideals intensively studied in commutative algebra, algebraic geometry, representation theory, and combinatorics. We introduce a combinatorial model called concurrent vertex maps to describe the Stanley–Reisner complex of the initial ideal of any bipartite determinantal ideal, and study properties and applications of this model including vertex decomposability, shelling orders, formulas of the Hilbert series, and <i>h</i>-polynomials.</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"95 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite determinantal ideals and concurrent vertex maps\",\"authors\":\"Li Li\",\"doi\":\"10.1007/s10801-024-01351-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bipartite determinantal ideals are introduced in Illian and Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) as a vast generalization of the classical determinantal ideals intensively studied in commutative algebra, algebraic geometry, representation theory, and combinatorics. We introduce a combinatorial model called concurrent vertex maps to describe the Stanley–Reisner complex of the initial ideal of any bipartite determinantal ideal, and study properties and applications of this model including vertex decomposability, shelling orders, formulas of the Hilbert series, and <i>h</i>-polynomials.</p>\",\"PeriodicalId\":14926,\"journal\":{\"name\":\"Journal of Algebraic Combinatorics\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01351-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01351-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
二方行列式理想在 Illian 和 Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) 中被引入,作为在交换代数、代数几何、表示论和组合学中深入研究的经典行列式理想的广义概括。我们引入了一种称为并发顶点映射的组合模型来描述任何双行列式理想的初始理想的 Stanley-Reisner 复数,并研究了这一模型的性质和应用,包括顶点可分解性、脱壳阶、希尔伯特数列公式和 h 多项式。
Bipartite determinantal ideals and concurrent vertex maps
Bipartite determinantal ideals are introduced in Illian and Li (Gröbner basis for the double determinantal ideals, http://arxiv.org/abs/2305.01724) as a vast generalization of the classical determinantal ideals intensively studied in commutative algebra, algebraic geometry, representation theory, and combinatorics. We introduce a combinatorial model called concurrent vertex maps to describe the Stanley–Reisner complex of the initial ideal of any bipartite determinantal ideal, and study properties and applications of this model including vertex decomposability, shelling orders, formulas of the Hilbert series, and h-polynomials.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.