Charles W. Casper, Mary Ellyn DuPre, Morgan L. McLeod, Rebecca A. Bunn, John L. Maron, Philip W. Ramsey, Ylva Lekberg
{"title":"植物-土壤负反馈影响草地恢复中的优势播种物种西洋蓍草(Achillea millefolium)","authors":"Charles W. Casper, Mary Ellyn DuPre, Morgan L. McLeod, Rebecca A. Bunn, John L. Maron, Philip W. Ramsey, Ylva Lekberg","doi":"10.1111/rec.14271","DOIUrl":null,"url":null,"abstract":"Plant community ecology guides restoration of degraded lands, yet seed‐based restorations sometimes fail or result in unpredictable outcomes, necessitating a better understanding of community trajectory and stability. Western yarrow (<jats:italic>Achillea millefolium</jats:italic>) declined suddenly in two separate restoration projects after initial high relative abundance. To assess the potential role of soil pathogens, we surveyed plant and soil fungal communities in these restorations, and used an 8‐year‐old field experiment that crossed yarrow planted in varying densities with a fungicide treatment. Two greenhouse experiments then evaluated whether the suppressive effect in yarrow soil spread to native species used in restoration. Lower yarrow cover in a restoration project 5 years compared to 3 years after seeding coincided with higher relative abundance of fungal taxa that can cause disease, particularly Crown‐rot fungi (<jats:italic>Paraphoma</jats:italic> spp.). <jats:italic>Paraphoma</jats:italic> increased over time in experimental plots and coincided with yarrow decline. Decline onset was density‐dependent, occurring faster in plant communities where yarrow density was higher. Fungicide applications altered fungal pathogen communities and promoted yarrow cover relative to control plots. In the greenhouse, yarrow grew larger with fungicide, consistent with suppression of fungal pathogens. However, biomass of natives grown in yarrow‐conditioned soil was not affected by fungicides, suggesting pathogens did not spread. The rapid establishment and competitive nature of yarrow, followed by pathogen‐induced decline, make it an attractive early transitional “bridge species,” so long as its pathogens are species‐specific. Our results suggest negative plant‐soil feedback can drive rapid decline of individual species, and considering plant–soil feedback could improve restoration predictability.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative plant–soil feedback influences a dominant seeded species, Western yarrow (Achillea millefolium), in grassland restoration\",\"authors\":\"Charles W. Casper, Mary Ellyn DuPre, Morgan L. McLeod, Rebecca A. Bunn, John L. Maron, Philip W. Ramsey, Ylva Lekberg\",\"doi\":\"10.1111/rec.14271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant community ecology guides restoration of degraded lands, yet seed‐based restorations sometimes fail or result in unpredictable outcomes, necessitating a better understanding of community trajectory and stability. Western yarrow (<jats:italic>Achillea millefolium</jats:italic>) declined suddenly in two separate restoration projects after initial high relative abundance. To assess the potential role of soil pathogens, we surveyed plant and soil fungal communities in these restorations, and used an 8‐year‐old field experiment that crossed yarrow planted in varying densities with a fungicide treatment. Two greenhouse experiments then evaluated whether the suppressive effect in yarrow soil spread to native species used in restoration. Lower yarrow cover in a restoration project 5 years compared to 3 years after seeding coincided with higher relative abundance of fungal taxa that can cause disease, particularly Crown‐rot fungi (<jats:italic>Paraphoma</jats:italic> spp.). <jats:italic>Paraphoma</jats:italic> increased over time in experimental plots and coincided with yarrow decline. Decline onset was density‐dependent, occurring faster in plant communities where yarrow density was higher. Fungicide applications altered fungal pathogen communities and promoted yarrow cover relative to control plots. In the greenhouse, yarrow grew larger with fungicide, consistent with suppression of fungal pathogens. However, biomass of natives grown in yarrow‐conditioned soil was not affected by fungicides, suggesting pathogens did not spread. The rapid establishment and competitive nature of yarrow, followed by pathogen‐induced decline, make it an attractive early transitional “bridge species,” so long as its pathogens are species‐specific. Our results suggest negative plant‐soil feedback can drive rapid decline of individual species, and considering plant–soil feedback could improve restoration predictability.\",\"PeriodicalId\":54487,\"journal\":{\"name\":\"Restoration Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Restoration Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/rec.14271\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14271","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Negative plant–soil feedback influences a dominant seeded species, Western yarrow (Achillea millefolium), in grassland restoration
Plant community ecology guides restoration of degraded lands, yet seed‐based restorations sometimes fail or result in unpredictable outcomes, necessitating a better understanding of community trajectory and stability. Western yarrow (Achillea millefolium) declined suddenly in two separate restoration projects after initial high relative abundance. To assess the potential role of soil pathogens, we surveyed plant and soil fungal communities in these restorations, and used an 8‐year‐old field experiment that crossed yarrow planted in varying densities with a fungicide treatment. Two greenhouse experiments then evaluated whether the suppressive effect in yarrow soil spread to native species used in restoration. Lower yarrow cover in a restoration project 5 years compared to 3 years after seeding coincided with higher relative abundance of fungal taxa that can cause disease, particularly Crown‐rot fungi (Paraphoma spp.). Paraphoma increased over time in experimental plots and coincided with yarrow decline. Decline onset was density‐dependent, occurring faster in plant communities where yarrow density was higher. Fungicide applications altered fungal pathogen communities and promoted yarrow cover relative to control plots. In the greenhouse, yarrow grew larger with fungicide, consistent with suppression of fungal pathogens. However, biomass of natives grown in yarrow‐conditioned soil was not affected by fungicides, suggesting pathogens did not spread. The rapid establishment and competitive nature of yarrow, followed by pathogen‐induced decline, make it an attractive early transitional “bridge species,” so long as its pathogens are species‐specific. Our results suggest negative plant‐soil feedback can drive rapid decline of individual species, and considering plant–soil feedback could improve restoration predictability.
期刊介绍:
Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.