抵御艰难梭状芽孢杆菌入侵的新陈代谢相互作用

Achuthan Ambat, Naomi Iris van den Berg, Francisco Zorrilla, Shruti Menon, Abhijit Maji, Arianna Basile, Sudeep Ghimire, Lajos Kalmar, Kiran Raosaheb Patil, Joy Scaria
{"title":"抵御艰难梭状芽孢杆菌入侵的新陈代谢相互作用","authors":"Achuthan Ambat, Naomi Iris van den Berg, Francisco Zorrilla, Shruti Menon, Abhijit Maji, Arianna Basile, Sudeep Ghimire, Lajos Kalmar, Kiran Raosaheb Patil, Joy Scaria","doi":"10.1101/2024.08.29.610284","DOIUrl":null,"url":null,"abstract":"Commensal gut bacteria are key contributors to the resilience against pathogen invasion. This is exemplified by the success of fecal microbiota transplantation in treating recurrent <em>Clostridioides difficile</em> infection. Yet, characteristics of communities that can confer colonization resistance and the underlying mechanisms remain largely unknown. Here we use a synthetic community of 14 commensal gut bacteria to uncover inter-species interactions and metabolic pathways underpinning the emergent resilience against <em>C. difficile</em> invasion. We challenged this synthetic community as well as fecal-matter-derived communities with antibiotic treatment and <em>C. difficile</em> in a continuous flow bioreactor. Using generalized Lotka-Volterra and genome-scale metabolic modelling, we identified interactions between <em>Escherichia coli</em> and <em>Bacteroides/Phocaeicola sp.</em> as key to the pathogen's suppression. Metabolomics analysis further revealed that fructooligosaccharide metabolism, vitamin B3 biosynthesis, and competition for Stickland metabolism precursors contribute to suppression. Analysis of metagenomics data from patient cohorts and clinical trials attested the <em>in vivo</em> relevance of the identified metabolic pathways and the ratio between <em>Bacteroides</em> and <em>Escherichia</em> in successful colonization resistance. The latter was found to be a much stronger discriminator than commonly used alpha diversity metrics. Our study uncovers emergent microbial interactions in pathogen resistance with implications for rational design of bacteriotherapies.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent metabolic interactions in resistance to Clostridioides difficile invasion\",\"authors\":\"Achuthan Ambat, Naomi Iris van den Berg, Francisco Zorrilla, Shruti Menon, Abhijit Maji, Arianna Basile, Sudeep Ghimire, Lajos Kalmar, Kiran Raosaheb Patil, Joy Scaria\",\"doi\":\"10.1101/2024.08.29.610284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commensal gut bacteria are key contributors to the resilience against pathogen invasion. This is exemplified by the success of fecal microbiota transplantation in treating recurrent <em>Clostridioides difficile</em> infection. Yet, characteristics of communities that can confer colonization resistance and the underlying mechanisms remain largely unknown. Here we use a synthetic community of 14 commensal gut bacteria to uncover inter-species interactions and metabolic pathways underpinning the emergent resilience against <em>C. difficile</em> invasion. We challenged this synthetic community as well as fecal-matter-derived communities with antibiotic treatment and <em>C. difficile</em> in a continuous flow bioreactor. Using generalized Lotka-Volterra and genome-scale metabolic modelling, we identified interactions between <em>Escherichia coli</em> and <em>Bacteroides/Phocaeicola sp.</em> as key to the pathogen's suppression. Metabolomics analysis further revealed that fructooligosaccharide metabolism, vitamin B3 biosynthesis, and competition for Stickland metabolism precursors contribute to suppression. Analysis of metagenomics data from patient cohorts and clinical trials attested the <em>in vivo</em> relevance of the identified metabolic pathways and the ratio between <em>Bacteroides</em> and <em>Escherichia</em> in successful colonization resistance. The latter was found to be a much stronger discriminator than commonly used alpha diversity metrics. Our study uncovers emergent microbial interactions in pathogen resistance with implications for rational design of bacteriotherapies.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.29.610284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.610284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肠道共生菌是抵御病原体入侵的关键因素。粪便微生物群移植治疗难辨梭状芽孢杆菌复发性感染的成功就是例证。然而,能赋予定植抵抗力的群落特征及其内在机制在很大程度上仍不为人所知。在这里,我们利用一个由 14 种肠道共生细菌组成的合成群落来揭示物种间的相互作用和新陈代谢途径,它们是抵御艰难梭菌入侵的基础。我们在连续流生物反应器中用抗生素治疗和艰难梭菌挑战了这个合成群落以及粪便衍生群落。利用广义洛特卡-伏特拉(Lotka-Volterra)和基因组尺度代谢建模,我们发现大肠杆菌和乳杆菌/嗜血杆菌(Bacteroides/Phocaeicola sp.)之间的相互作用是抑制病原体的关键。代谢组学分析进一步揭示了果寡糖代谢、维生素 B3 生物合成和竞争斯蒂克兰代谢前体有助于抑制病原体。对来自患者队列和临床试验的元基因组学数据进行分析,证明了已确定的代谢途径与体内的相关性,以及在成功抵抗定植过程中乳酸杆菌和埃希氏菌之间的比例。与常用的阿尔法多样性指标相比,后者的判别能力更强。我们的研究揭示了病原体耐药性中出现的微生物相互作用,对合理设计细菌疗法具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent metabolic interactions in resistance to Clostridioides difficile invasion
Commensal gut bacteria are key contributors to the resilience against pathogen invasion. This is exemplified by the success of fecal microbiota transplantation in treating recurrent Clostridioides difficile infection. Yet, characteristics of communities that can confer colonization resistance and the underlying mechanisms remain largely unknown. Here we use a synthetic community of 14 commensal gut bacteria to uncover inter-species interactions and metabolic pathways underpinning the emergent resilience against C. difficile invasion. We challenged this synthetic community as well as fecal-matter-derived communities with antibiotic treatment and C. difficile in a continuous flow bioreactor. Using generalized Lotka-Volterra and genome-scale metabolic modelling, we identified interactions between Escherichia coli and Bacteroides/Phocaeicola sp. as key to the pathogen's suppression. Metabolomics analysis further revealed that fructooligosaccharide metabolism, vitamin B3 biosynthesis, and competition for Stickland metabolism precursors contribute to suppression. Analysis of metagenomics data from patient cohorts and clinical trials attested the in vivo relevance of the identified metabolic pathways and the ratio between Bacteroides and Escherichia in successful colonization resistance. The latter was found to be a much stronger discriminator than commonly used alpha diversity metrics. Our study uncovers emergent microbial interactions in pathogen resistance with implications for rational design of bacteriotherapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信