{"title":"关于有界曲率的确定性次模态最大化的说明","authors":"Wenxin Li","doi":"arxiv-2409.02943","DOIUrl":null,"url":null,"abstract":"We show that the recent breakthrough result of [Buchbinder and Feldman,\nFOCS'24] could further lead to a deterministic\n$(1-\\kappa_{f}/e-\\varepsilon)$-approximate algorithm for maximizing a\nsubmodular function with curvature $\\kappa_{f}$ under matroid constraint.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note On Deterministic Submodular Maximization With Bounded Curvature\",\"authors\":\"Wenxin Li\",\"doi\":\"arxiv-2409.02943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the recent breakthrough result of [Buchbinder and Feldman,\\nFOCS'24] could further lead to a deterministic\\n$(1-\\\\kappa_{f}/e-\\\\varepsilon)$-approximate algorithm for maximizing a\\nsubmodular function with curvature $\\\\kappa_{f}$ under matroid constraint.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们的研究表明,[Buchbinder and Feldman,FOCS'24] 最近的突破性成果可以进一步导致一种确定性$(1-\kappa_{f}/e-\varepsilon)$ 近似算法,用于在矩阵约束下最大化曲率为$\kappa_{f}$的次模态函数。
A Note On Deterministic Submodular Maximization With Bounded Curvature
We show that the recent breakthrough result of [Buchbinder and Feldman,
FOCS'24] could further lead to a deterministic
$(1-\kappa_{f}/e-\varepsilon)$-approximate algorithm for maximizing a
submodular function with curvature $\kappa_{f}$ under matroid constraint.