{"title":"随机顺序流和稳健通信模型中的加权匹配","authors":"Diba Hashemi, Weronika Wrzos-Kaminska","doi":"arxiv-2408.15434","DOIUrl":null,"url":null,"abstract":"We study the maximum weight matching problem in the random-order\nsemi-streaming model and in the robust communication model. Unlike many other\nsublinear models, in these two frameworks, there is a large gap between the\nguarantees of the best known algorithms for the unweighted and weighted\nversions of the problem. In the random-order semi-streaming setting, the edges of an $n$-vertex graph\narrive in a stream in a random order. The goal is to compute an approximate\nmaximum weight matching with a single pass over the stream using $O(n\\text{\npolylog } n)$ space. Our main result is a $(2/3-\\epsilon)$-approximation\nalgorithm for maximum weight matching in random-order streams, using space $O(n\n\\log n \\log R)$, where $R$ is the ratio between the heaviest and the lightest\nedge in the graph. Our result nearly matches the best known unweighted\n$(2/3+\\epsilon_0)$-approximation (where $\\epsilon_0 \\sim 10^{-14}$ is a small\nconstant) achieved by Assadi and Behnezhad [ICALP 2021], and significantly\nimproves upon previous weighted results. Our techniques also extend to the related robust communication model, in\nwhich the edges of a graph are partitioned randomly between Alice and Bob.\nAlice sends a single message of size $O(n\\text{ polylog }n)$ to Bob, who must\ncompute an approximate maximum weight matching. We achieve a\n$(5/6-\\epsilon)$-approximation using $O(n \\log n \\log R)$ words of\ncommunication, matching the results of Azarmehr and Behnezhad [ICALP 2023] for\nunweighted graphs.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Matching in the Random-Order Streaming and Robust Communication Models\",\"authors\":\"Diba Hashemi, Weronika Wrzos-Kaminska\",\"doi\":\"arxiv-2408.15434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the maximum weight matching problem in the random-order\\nsemi-streaming model and in the robust communication model. Unlike many other\\nsublinear models, in these two frameworks, there is a large gap between the\\nguarantees of the best known algorithms for the unweighted and weighted\\nversions of the problem. In the random-order semi-streaming setting, the edges of an $n$-vertex graph\\narrive in a stream in a random order. The goal is to compute an approximate\\nmaximum weight matching with a single pass over the stream using $O(n\\\\text{\\npolylog } n)$ space. Our main result is a $(2/3-\\\\epsilon)$-approximation\\nalgorithm for maximum weight matching in random-order streams, using space $O(n\\n\\\\log n \\\\log R)$, where $R$ is the ratio between the heaviest and the lightest\\nedge in the graph. Our result nearly matches the best known unweighted\\n$(2/3+\\\\epsilon_0)$-approximation (where $\\\\epsilon_0 \\\\sim 10^{-14}$ is a small\\nconstant) achieved by Assadi and Behnezhad [ICALP 2021], and significantly\\nimproves upon previous weighted results. Our techniques also extend to the related robust communication model, in\\nwhich the edges of a graph are partitioned randomly between Alice and Bob.\\nAlice sends a single message of size $O(n\\\\text{ polylog }n)$ to Bob, who must\\ncompute an approximate maximum weight matching. We achieve a\\n$(5/6-\\\\epsilon)$-approximation using $O(n \\\\log n \\\\log R)$ words of\\ncommunication, matching the results of Azarmehr and Behnezhad [ICALP 2023] for\\nunweighted graphs.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了随机有序流模型和鲁棒通信模型中的最大权重匹配问题。与许多其他次线性模型不同,在这两个框架中,问题的非加权和加权版本的已知最佳算法的保证之间存在很大差距。在随机顺序半流化设置中,$n$顶点图的边以随机顺序到达流中。我们的目标是使用 $O(ntext{polylog } n)$ 空间,一次通过流计算近似最大权重匹配。我们的主要结果是一个用于随机顺序流中最大权重匹配的 $(2/3-\epsilon)$ 近似算法,使用空间 $O(n\log n \log R)$,其中 $R$ 是图中最重边和最轻边之间的比率。我们的结果几乎与 Assadi 和 Behnezhad [ICALP 2021] 所取得的最佳非加权$(2/3+\epsilon_0)$-近似值(其中$\epsilon_0 \sim 10^{-14}$ 是一个小常数)相匹配,并且大大改进了之前的加权结果。我们的技术还扩展到了相关的鲁棒通信模型,其中图的边在 Alice 和 Bob 之间随机分割。Alice 向 Bob 发送大小为 $O(ntext{ polylog }n)$ 的单条信息,而 Bob 必须计算近似的最大权重匹配。我们使用 $O(n \log n \log R)$ 的通信字数实现了$(5/6-\epsilon)$ 的近似值,与 Azarmehr 和 Behnezhad [ICALP 2023]针对无权重图的结果不相上下。
Weighted Matching in the Random-Order Streaming and Robust Communication Models
We study the maximum weight matching problem in the random-order
semi-streaming model and in the robust communication model. Unlike many other
sublinear models, in these two frameworks, there is a large gap between the
guarantees of the best known algorithms for the unweighted and weighted
versions of the problem. In the random-order semi-streaming setting, the edges of an $n$-vertex graph
arrive in a stream in a random order. The goal is to compute an approximate
maximum weight matching with a single pass over the stream using $O(n\text{
polylog } n)$ space. Our main result is a $(2/3-\epsilon)$-approximation
algorithm for maximum weight matching in random-order streams, using space $O(n
\log n \log R)$, where $R$ is the ratio between the heaviest and the lightest
edge in the graph. Our result nearly matches the best known unweighted
$(2/3+\epsilon_0)$-approximation (where $\epsilon_0 \sim 10^{-14}$ is a small
constant) achieved by Assadi and Behnezhad [ICALP 2021], and significantly
improves upon previous weighted results. Our techniques also extend to the related robust communication model, in
which the edges of a graph are partitioned randomly between Alice and Bob.
Alice sends a single message of size $O(n\text{ polylog }n)$ to Bob, who must
compute an approximate maximum weight matching. We achieve a
$(5/6-\epsilon)$-approximation using $O(n \log n \log R)$ words of
communication, matching the results of Azarmehr and Behnezhad [ICALP 2023] for
unweighted graphs.