Hadamard 行向生成算法

Brayan Monroy, Jorge Bacca
{"title":"Hadamard 行向生成算法","authors":"Brayan Monroy, Jorge Bacca","doi":"arxiv-2409.02406","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an efficient algorithm for generating specific\nHadamard rows, addressing the memory demands of pre-computing the entire\nmatrix. Leveraging Sylvester's recursive construction, our method generates the\nrequired $i$-th row on demand, significantly reducing computational resources.\nThe algorithm uses the Kronecker product to construct the desired row from the\nbinary representation of the index, without creating the full matrix. This\napproach is particularly useful for single-pixel imaging systems that need only\none row at a time.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hadamard Row-Wise Generation Algorithm\",\"authors\":\"Brayan Monroy, Jorge Bacca\",\"doi\":\"arxiv-2409.02406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an efficient algorithm for generating specific\\nHadamard rows, addressing the memory demands of pre-computing the entire\\nmatrix. Leveraging Sylvester's recursive construction, our method generates the\\nrequired $i$-th row on demand, significantly reducing computational resources.\\nThe algorithm uses the Kronecker product to construct the desired row from the\\nbinary representation of the index, without creating the full matrix. This\\napproach is particularly useful for single-pixel imaging systems that need only\\none row at a time.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种生成特定哈达玛德行的高效算法,解决了预先计算整个矩阵对内存的需求。利用西尔维斯特的递归结构,我们的方法可按需生成所需的第 i$ 行,从而大大减少了计算资源。该算法使用克朗内克乘积从索引的二进制表示中构建所需行,而无需创建完整矩阵。这种方法特别适用于一次只需一行的单像素成像系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadamard Row-Wise Generation Algorithm
In this paper, we introduce an efficient algorithm for generating specific Hadamard rows, addressing the memory demands of pre-computing the entire matrix. Leveraging Sylvester's recursive construction, our method generates the required $i$-th row on demand, significantly reducing computational resources. The algorithm uses the Kronecker product to construct the desired row from the binary representation of the index, without creating the full matrix. This approach is particularly useful for single-pixel imaging systems that need only one row at a time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信