子集和允许简短证明吗?

Michał Włodarczyk
{"title":"子集和允许简短证明吗?","authors":"Michał Włodarczyk","doi":"arxiv-2409.03526","DOIUrl":null,"url":null,"abstract":"We investigate the question whether Subset Sum can be solved by a\npolynomial-time algorithm with access to a certificate of length poly(k) where\nk is the maximal number of bits in an input number. In other words, can it be\nsolved using only few nondeterministic bits? This question has motivated us to initiate a systematic study of\ncertification complexity of parameterized problems. Apart from Subset Sum, we\nexamine problems related to integer linear programming, scheduling, and group\ntheory. We reveal an equivalence class of problems sharing the same hardness\nwith respect to having a polynomial certificate. These include Subset Sum and\nBoolean Linear Programming parameterized by the number of constraints.\nSecondly, we present new techniques for establishing lower bounds in this\nregime. In particular, we show that Subset Sum in permutation groups is at\nleast as hard for nondeterministic computation as 3Coloring in\nbounded-pathwidth graphs.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does Subset Sum Admit Short Proofs?\",\"authors\":\"Michał Włodarczyk\",\"doi\":\"arxiv-2409.03526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the question whether Subset Sum can be solved by a\\npolynomial-time algorithm with access to a certificate of length poly(k) where\\nk is the maximal number of bits in an input number. In other words, can it be\\nsolved using only few nondeterministic bits? This question has motivated us to initiate a systematic study of\\ncertification complexity of parameterized problems. Apart from Subset Sum, we\\nexamine problems related to integer linear programming, scheduling, and group\\ntheory. We reveal an equivalence class of problems sharing the same hardness\\nwith respect to having a polynomial certificate. These include Subset Sum and\\nBoolean Linear Programming parameterized by the number of constraints.\\nSecondly, we present new techniques for establishing lower bounds in this\\nregime. In particular, we show that Subset Sum in permutation groups is at\\nleast as hard for nondeterministic computation as 3Coloring in\\nbounded-pathwidth graphs.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要研究的问题是,子集和能否通过多项式时间算法求解,并获得长度为 poly(k) 的证书,其中 k 是输入数的最大比特数。换句话说,能否只用很少的非确定性比特来求解?这个问题促使我们开始系统地研究参数化问题的证书复杂度。除了子集和,我们还研究了与整数线性规划、调度和群论相关的问题。我们揭示了一类在多项式证书方面具有相同难度的等价问题。这些问题包括以约束条件数量为参数的子集求和与布尔线性规划。其次,我们提出了在这一领域建立下界的新技术。其次,我们提出了在这一领域建立下限的新技术。我们特别指出,对于非确定性计算而言,置换群中的子集和至少与有界路径宽度图中的着色一样难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does Subset Sum Admit Short Proofs?
We investigate the question whether Subset Sum can be solved by a polynomial-time algorithm with access to a certificate of length poly(k) where k is the maximal number of bits in an input number. In other words, can it be solved using only few nondeterministic bits? This question has motivated us to initiate a systematic study of certification complexity of parameterized problems. Apart from Subset Sum, we examine problems related to integer linear programming, scheduling, and group theory. We reveal an equivalence class of problems sharing the same hardness with respect to having a polynomial certificate. These include Subset Sum and Boolean Linear Programming parameterized by the number of constraints. Secondly, we present new techniques for establishing lower bounds in this regime. In particular, we show that Subset Sum in permutation groups is at least as hard for nondeterministic computation as 3Coloring in bounded-pathwidth graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信