整数线性规划相关问题的细粒度等价性

Lars Rohwedder, Karol Węgrzycki
{"title":"整数线性规划相关问题的细粒度等价性","authors":"Lars Rohwedder, Karol Węgrzycki","doi":"arxiv-2409.03675","DOIUrl":null,"url":null,"abstract":"Integer Linear Programming with $n$ binary variables and $m$ many\n$0/1$-constraints can be solved in time $2^{\\tilde O(m^2)} \\text{poly}(n)$ and\nit is open whether the dependence on $m$ is optimal. Several seemingly\nunrelated problems, which include variants of Closest String, Discrepancy\nMinimization, Set Cover, and Set Packing, can be modelled as Integer Linear\nProgramming with $0/1$ constraints to obtain algorithms with the same running\ntime for a natural parameter $m$ in each of the problems. Our main result\nestablishes through fine-grained reductions that these problems are equivalent,\nmeaning that a $2^{O(m^{2-\\varepsilon})} \\text{poly}(n)$ algorithm with\n$\\varepsilon > 0$ for one of them implies such an algorithm for all of them. In the setting above, one can alternatively obtain an $n^{O(m)}$ time\nalgorithm for Integer Linear Programming using a straightforward dynamic\nprogramming approach, which can be more efficient if $n$ is relatively small\n(e.g., subexponential in $m$). We show that this can be improved to\n${n'}^{O(m)} + O(nm)$, where $n'$ is the number of distinct (i.e.,\nnon-symmetric) variables. This dominates both of the aforementioned running\ntimes.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Equivalence for Problems Related to Integer Linear Programming\",\"authors\":\"Lars Rohwedder, Karol Węgrzycki\",\"doi\":\"arxiv-2409.03675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integer Linear Programming with $n$ binary variables and $m$ many\\n$0/1$-constraints can be solved in time $2^{\\\\tilde O(m^2)} \\\\text{poly}(n)$ and\\nit is open whether the dependence on $m$ is optimal. Several seemingly\\nunrelated problems, which include variants of Closest String, Discrepancy\\nMinimization, Set Cover, and Set Packing, can be modelled as Integer Linear\\nProgramming with $0/1$ constraints to obtain algorithms with the same running\\ntime for a natural parameter $m$ in each of the problems. Our main result\\nestablishes through fine-grained reductions that these problems are equivalent,\\nmeaning that a $2^{O(m^{2-\\\\varepsilon})} \\\\text{poly}(n)$ algorithm with\\n$\\\\varepsilon > 0$ for one of them implies such an algorithm for all of them. In the setting above, one can alternatively obtain an $n^{O(m)}$ time\\nalgorithm for Integer Linear Programming using a straightforward dynamic\\nprogramming approach, which can be more efficient if $n$ is relatively small\\n(e.g., subexponential in $m$). We show that this can be improved to\\n${n'}^{O(m)} + O(nm)$, where $n'$ is the number of distinct (i.e.,\\nnon-symmetric) variables. This dominates both of the aforementioned running\\ntimes.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有 $n$ 二进制变量和 $m$ 多个 $0/1$ 约束的整数线性规划可以在 2^{\tilde O(m^2)} \text{poly}(n)$ 的时间内求解,而对 $m$ 的依赖是否最优尚无定论。几个看似不相关的问题,包括最邻近字符串、差异最小化、集合覆盖和集合打包的变体,都可以用带有 $0/1$ 约束的整数线性编程来建模,从而得到每个问题中自然参数 $m$ 运行时间相同的算法。我们的主要结果通过细粒度还原证明,这些问题是等价的,这意味着有一个 $2^{O(m^{2\varepsilon})} 的算法可以解决这些问题。\varepsilon > 0$ 的算法,意味着所有问题都有这样的算法。在上述环境中,我们可以用一种直接的动态编程方法为整数线性规划求得一个 $n^{O(m)}$ 时间的算法,如果 $n$ 相对较小(例如 $m$ 的亚指数级),这种算法会更有效。我们的研究表明,这种方法可以改进为${n'}^{O(m)} + O(nm)$,其中$n'$是不同变量(即非对称变量)的数量。这在上述两个运行时间中都占优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Equivalence for Problems Related to Integer Linear Programming
Integer Linear Programming with $n$ binary variables and $m$ many $0/1$-constraints can be solved in time $2^{\tilde O(m^2)} \text{poly}(n)$ and it is open whether the dependence on $m$ is optimal. Several seemingly unrelated problems, which include variants of Closest String, Discrepancy Minimization, Set Cover, and Set Packing, can be modelled as Integer Linear Programming with $0/1$ constraints to obtain algorithms with the same running time for a natural parameter $m$ in each of the problems. Our main result establishes through fine-grained reductions that these problems are equivalent, meaning that a $2^{O(m^{2-\varepsilon})} \text{poly}(n)$ algorithm with $\varepsilon > 0$ for one of them implies such an algorithm for all of them. In the setting above, one can alternatively obtain an $n^{O(m)}$ time algorithm for Integer Linear Programming using a straightforward dynamic programming approach, which can be more efficient if $n$ is relatively small (e.g., subexponential in $m$). We show that this can be improved to ${n'}^{O(m)} + O(nm)$, where $n'$ is the number of distinct (i.e., non-symmetric) variables. This dominates both of the aforementioned running times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信