{"title":"具有少量约束条件的整数编程空间效率算法","authors":"Lars Rohwedder, Karol Węgrzycki","doi":"arxiv-2409.03681","DOIUrl":null,"url":null,"abstract":"Integer linear programs $\\min\\{c^T x : A x = b, x \\in \\mathbb{Z}^n_{\\ge\n0}\\}$, where $A \\in \\mathbb{Z}^{m \\times n}$, $b \\in \\mathbb{Z}^m$, and $c \\in\n\\mathbb{Z}^n$, can be solved in pseudopolynomial time for any fixed number of\nconstraints $m = O(1)$. More precisely, in time $(m\\Delta)^{O(m)}\n\\text{poly}(I)$, where $\\Delta$ is the maximum absolute value of an entry in\n$A$ and $I$ the input size. Known algorithms rely heavily on dynamic programming, which leads to a space\ncomplexity of similar order of magnitude as the running time. In this paper, we\npresent a polynomial space algorithm that solves integer linear programs in\n$(m\\Delta)^{O(m (\\log m + \\log\\log\\Delta))} \\text{poly}(I)$ time, that is, in\nalmost the same time as previous dynamic programming algorithms.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-Efficient Algorithm for Integer Programming with Few Constraints\",\"authors\":\"Lars Rohwedder, Karol Węgrzycki\",\"doi\":\"arxiv-2409.03681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integer linear programs $\\\\min\\\\{c^T x : A x = b, x \\\\in \\\\mathbb{Z}^n_{\\\\ge\\n0}\\\\}$, where $A \\\\in \\\\mathbb{Z}^{m \\\\times n}$, $b \\\\in \\\\mathbb{Z}^m$, and $c \\\\in\\n\\\\mathbb{Z}^n$, can be solved in pseudopolynomial time for any fixed number of\\nconstraints $m = O(1)$. More precisely, in time $(m\\\\Delta)^{O(m)}\\n\\\\text{poly}(I)$, where $\\\\Delta$ is the maximum absolute value of an entry in\\n$A$ and $I$ the input size. Known algorithms rely heavily on dynamic programming, which leads to a space\\ncomplexity of similar order of magnitude as the running time. In this paper, we\\npresent a polynomial space algorithm that solves integer linear programs in\\n$(m\\\\Delta)^{O(m (\\\\log m + \\\\log\\\\log\\\\Delta))} \\\\text{poly}(I)$ time, that is, in\\nalmost the same time as previous dynamic programming algorithms.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
整数线性程序 $min\{c^T x : A x = b, x \in \mathbb{Z}^n_{\ge0}\}$, 其中 $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, 和 $c \in\mathbb{Z}^n$, 可以在任意固定约束条件数量 $m = O(1)$ 的伪多项式时间内求解。更准确地说,时间为 $(m\Delta)^{O(m)}\text{poly}(I)$,其中 $\Delta$ 是 A$ 中条目最大绝对值,$I$ 是输入大小。已知算法在很大程度上依赖于动态编程,这导致空间复杂度与运行时间的数量级相近。本文提出了一种多项式空间算法,它能在$(m\Delta)^{O(m (\log m +\log\Delta))} 内求解整数线性程序。\text{poly}(I)$时间,也就是说,与之前的动态编程算法几乎相同。
Space-Efficient Algorithm for Integer Programming with Few Constraints
Integer linear programs $\min\{c^T x : A x = b, x \in \mathbb{Z}^n_{\ge
0}\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in
\mathbb{Z}^n$, can be solved in pseudopolynomial time for any fixed number of
constraints $m = O(1)$. More precisely, in time $(m\Delta)^{O(m)}
\text{poly}(I)$, where $\Delta$ is the maximum absolute value of an entry in
$A$ and $I$ the input size. Known algorithms rely heavily on dynamic programming, which leads to a space
complexity of similar order of magnitude as the running time. In this paper, we
present a polynomial space algorithm that solves integer linear programs in
$(m\Delta)^{O(m (\log m + \log\log\Delta))} \text{poly}(I)$ time, that is, in
almost the same time as previous dynamic programming algorithms.