使用最小参数的 FPT 算法,适用于 Maximin Shares 的广义版本

Klaus Jansen, Alexandra Lassota, Malte Tutas, Adrian Vetta
{"title":"使用最小参数的 FPT 算法,适用于 Maximin Shares 的广义版本","authors":"Klaus Jansen, Alexandra Lassota, Malte Tutas, Adrian Vetta","doi":"arxiv-2409.04225","DOIUrl":null,"url":null,"abstract":"We study the computational complexity of fairly allocating indivisible,\nmixed-manna items. For basic measures of fairness, this problem is hard in\ngeneral. Thus, research has flourished concerning input classes where efficient\nalgorithms exist, both for the purpose of establishing theoretical boundaries\nand for the purpose of designing practical algorithms for real-world instances.\nNotably, the paradigm of fixed-parameter tractability (FPT) has lead to new\ninsights and improved algorithms for a variety of fair allocation problems;\nsee, for example, Bleim et al. (IJCAI 16), Aziz et al. (AAAI 17), Bredereck et\nal. (EC 19) and Kulkarni et al. (EC 21). Our focus is the fairness measure maximin shares (MMS). Motivated by the\ngeneral non-existence of MMS allocations, Aziz et al. (AAAI 17) studied optimal\nMMS allocations, namely solutions that achieve the best $\\alpha$-approximation\nfor the maximin share value of every agent. These allocations are guaranteed to\nexist, prompting the important open question of whether optimal MMS allocations\ncan be computed efficiently. We answer this question affirmatively by providing\nFPT algorithms to output optimal MMS allocations. Furthermore, our techniques\nextend to find allocations that optimize alternative objectives, such as\nminimizing the additive approximation, and maximizing some variants of global\nwelfare. In fact, all our algorithms are designed for a more general MMS problem in\nmachine scheduling. Here, each mixed-manna item (job) must be assigned to an\nagent (machine) and has a processing time and a deadline. We develop efficient\nalgorithms running in FPT time. Formally, we present polynomial time algorithms\nw.r.t. the input size times some function dependent on the parameters that\nyield optimal maximin-value approximations (among others) when parameterized by\na set of natural parameters","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPT Algorithms using Minimal Parameters for a Generalized Version of Maximin Shares\",\"authors\":\"Klaus Jansen, Alexandra Lassota, Malte Tutas, Adrian Vetta\",\"doi\":\"arxiv-2409.04225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the computational complexity of fairly allocating indivisible,\\nmixed-manna items. For basic measures of fairness, this problem is hard in\\ngeneral. Thus, research has flourished concerning input classes where efficient\\nalgorithms exist, both for the purpose of establishing theoretical boundaries\\nand for the purpose of designing practical algorithms for real-world instances.\\nNotably, the paradigm of fixed-parameter tractability (FPT) has lead to new\\ninsights and improved algorithms for a variety of fair allocation problems;\\nsee, for example, Bleim et al. (IJCAI 16), Aziz et al. (AAAI 17), Bredereck et\\nal. (EC 19) and Kulkarni et al. (EC 21). Our focus is the fairness measure maximin shares (MMS). Motivated by the\\ngeneral non-existence of MMS allocations, Aziz et al. (AAAI 17) studied optimal\\nMMS allocations, namely solutions that achieve the best $\\\\alpha$-approximation\\nfor the maximin share value of every agent. These allocations are guaranteed to\\nexist, prompting the important open question of whether optimal MMS allocations\\ncan be computed efficiently. We answer this question affirmatively by providing\\nFPT algorithms to output optimal MMS allocations. Furthermore, our techniques\\nextend to find allocations that optimize alternative objectives, such as\\nminimizing the additive approximation, and maximizing some variants of global\\nwelfare. In fact, all our algorithms are designed for a more general MMS problem in\\nmachine scheduling. Here, each mixed-manna item (job) must be assigned to an\\nagent (machine) and has a processing time and a deadline. We develop efficient\\nalgorithms running in FPT time. Formally, we present polynomial time algorithms\\nw.r.t. the input size times some function dependent on the parameters that\\nyield optimal maximin-value approximations (among others) when parameterized by\\na set of natural parameters\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了公平分配不可分割的混合物品的计算复杂性。对于公平性的基本衡量标准来说,这个问题一般很难解决。因此,关于存在高效算法的输入类别的研究蓬勃发展,其目的既包括建立理论边界,也包括为现实世界的实例设计实用算法。值得注意的是,固定参数可操作性(FPT)范式为各种公平分配问题带来了新的见解和改进算法;例如,请参阅 Bleim 等(IJCAI 16)、Aziz 等(AAAI 17)、Bredereck 等(EC 19)和 Kulkarni 等(EC 21)。(EC 19) 和 Kulkarni 等人 (EC 21)。我们的重点是公平度量最大化份额(MMS)。受 MMS 分配普遍不存在的启发,Aziz 等人(AAAI 17)研究了最优 MMS 分配,即实现每个代理的最大份额值的最佳 $\alpha$-approximation 的解决方案。这些分配是有保证的,这就提出了一个重要的开放性问题,即最优 MMS 分配是否可以高效计算。我们提供了输出最优 MMS 分配的 FPT 算法,从而肯定地回答了这个问题。此外,我们的技术还可以扩展到寻找优化其他目标的分配,如最小化加法近似值和最大化全球福利的某些变体。事实上,我们的所有算法都是针对机器调度中更一般的 MMS 问题而设计的。在这里,每个混合管理项目(作业)都必须分配给一个代理(机器),并有一个处理时间和截止日期。我们开发了在 FPT 时间内运行的高效算法。从形式上看,我们提出了多项式时间算法,当参数化为一组自然参数时,输入大小乘以某个依赖于参数的函数,就会产生最优的最大值近似值(以及其他近似值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPT Algorithms using Minimal Parameters for a Generalized Version of Maximin Shares
We study the computational complexity of fairly allocating indivisible, mixed-manna items. For basic measures of fairness, this problem is hard in general. Thus, research has flourished concerning input classes where efficient algorithms exist, both for the purpose of establishing theoretical boundaries and for the purpose of designing practical algorithms for real-world instances. Notably, the paradigm of fixed-parameter tractability (FPT) has lead to new insights and improved algorithms for a variety of fair allocation problems; see, for example, Bleim et al. (IJCAI 16), Aziz et al. (AAAI 17), Bredereck et al. (EC 19) and Kulkarni et al. (EC 21). Our focus is the fairness measure maximin shares (MMS). Motivated by the general non-existence of MMS allocations, Aziz et al. (AAAI 17) studied optimal MMS allocations, namely solutions that achieve the best $\alpha$-approximation for the maximin share value of every agent. These allocations are guaranteed to exist, prompting the important open question of whether optimal MMS allocations can be computed efficiently. We answer this question affirmatively by providing FPT algorithms to output optimal MMS allocations. Furthermore, our techniques extend to find allocations that optimize alternative objectives, such as minimizing the additive approximation, and maximizing some variants of global welfare. In fact, all our algorithms are designed for a more general MMS problem in machine scheduling. Here, each mixed-manna item (job) must be assigned to an agent (machine) and has a processing time and a deadline. We develop efficient algorithms running in FPT time. Formally, we present polynomial time algorithms w.r.t. the input size times some function dependent on the parameters that yield optimal maximin-value approximations (among others) when parameterized by a set of natural parameters
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信