应用于差分隐私的简单线性空间 ANN 数据结构

Martin Aumüller, Fabrizio Boninsegna, Francesco Silvestri
{"title":"应用于差分隐私的简单线性空间 ANN 数据结构","authors":"Martin Aumüller, Fabrizio Boninsegna, Francesco Silvestri","doi":"arxiv-2409.07187","DOIUrl":null,"url":null,"abstract":"Locality Sensitive Filters are known for offering a quasi-linear space data\nstructure with rigorous guarantees for the Approximate Near Neighbor search\nproblem. Building on Locality Sensitive Filters, we derive a simple data\nstructure for the Approximate Near Neighbor Counting problem under differential\nprivacy. Moreover, we provide a simple analysis leveraging a connection with\nconcomitant statistics and extreme value theory. Our approach achieves the same\nperformance as the recent findings of Andoni et al. (NeurIPS 2023) but with a\nmore straightforward method. As a side result, the paper provides a more\ncompact description and analysis of Locality Sensitive Filters for Approximate\nNear Neighbor Search under inner product similarity, improving a previous\nresult in Aum\\\"{u}ller et al. (TODS 2022).","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Linear Space Data Structure for ANN with Application in Differential Privacy\",\"authors\":\"Martin Aumüller, Fabrizio Boninsegna, Francesco Silvestri\",\"doi\":\"arxiv-2409.07187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locality Sensitive Filters are known for offering a quasi-linear space data\\nstructure with rigorous guarantees for the Approximate Near Neighbor search\\nproblem. Building on Locality Sensitive Filters, we derive a simple data\\nstructure for the Approximate Near Neighbor Counting problem under differential\\nprivacy. Moreover, we provide a simple analysis leveraging a connection with\\nconcomitant statistics and extreme value theory. Our approach achieves the same\\nperformance as the recent findings of Andoni et al. (NeurIPS 2023) but with a\\nmore straightforward method. As a side result, the paper provides a more\\ncompact description and analysis of Locality Sensitive Filters for Approximate\\nNear Neighbor Search under inner product similarity, improving a previous\\nresult in Aum\\\\\\\"{u}ller et al. (TODS 2022).\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

位置敏感过滤器(Locality Sensitive Filters)因其为近似近邻搜索问题提供了具有严格保证的准线性空间数据结构而闻名。在位置敏感过滤器的基础上,我们为差分保密条件下的近似近邻计数问题推导出了一种简单的数据结构。此外,我们还利用相关统计和极值理论进行了简单分析。我们的方法实现了与 Andoni 等人最近的研究成果(NeurIPS 2023)相同的性能,但方法更为直接。作为附带结果,本文对内积相似性下近似近邻搜索的位置敏感过滤器进行了更紧凑的描述和分析,改进了 Aum\"{u}ller 等人(TODS 2022)的前一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Linear Space Data Structure for ANN with Application in Differential Privacy
Locality Sensitive Filters are known for offering a quasi-linear space data structure with rigorous guarantees for the Approximate Near Neighbor search problem. Building on Locality Sensitive Filters, we derive a simple data structure for the Approximate Near Neighbor Counting problem under differential privacy. Moreover, we provide a simple analysis leveraging a connection with concomitant statistics and extreme value theory. Our approach achieves the same performance as the recent findings of Andoni et al. (NeurIPS 2023) but with a more straightforward method. As a side result, the paper provides a more compact description and analysis of Locality Sensitive Filters for Approximate Near Neighbor Search under inner product similarity, improving a previous result in Aum\"{u}ller et al. (TODS 2022).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信