高优点因子二进制序列的双步优化

Blaž Pšeničnik, Rene Mlinarič, Janez Brest, Borko Bošković
{"title":"高优点因子二进制序列的双步优化","authors":"Blaž Pšeničnik, Rene Mlinarič, Janez Brest, Borko Bošković","doi":"arxiv-2409.07222","DOIUrl":null,"url":null,"abstract":"The problem of finding aperiodic low auto-correlation binary sequences (LABS)\npresents a significant computational challenge, particularly as the sequence\nlength increases. Such sequences have important applications in communication\nengineering, physics, chemistry, and cryptography. This paper introduces a\nnovel dual-step algorithm for long binary sequences with high merit factors.\nThe first step employs a parallel algorithm utilizing skew-symmetry and\nrestriction classes to generate sequence candidates with merit factors above a\npredefined threshold. The second step uses a priority queue algorithm to refine\nthese candidates further, searching the entire search space unrestrictedly. By\ncombining GPU-based parallel computing and dual-step optimization, our approach\nhas successfully identified new best-known binary sequences for all lengths\nranging from 450 to 527, with the exception of length 518, where the previous\nbest-known value was matched with a different sequence. This hybrid method\nsignificantly outperforms traditional exhaustive and stochastic search methods,\noffering an efficient solution for finding long sequences with good merit\nfactors.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Step Optimization for Binary Sequences with High Merit Factors\",\"authors\":\"Blaž Pšeničnik, Rene Mlinarič, Janez Brest, Borko Bošković\",\"doi\":\"arxiv-2409.07222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of finding aperiodic low auto-correlation binary sequences (LABS)\\npresents a significant computational challenge, particularly as the sequence\\nlength increases. Such sequences have important applications in communication\\nengineering, physics, chemistry, and cryptography. This paper introduces a\\nnovel dual-step algorithm for long binary sequences with high merit factors.\\nThe first step employs a parallel algorithm utilizing skew-symmetry and\\nrestriction classes to generate sequence candidates with merit factors above a\\npredefined threshold. The second step uses a priority queue algorithm to refine\\nthese candidates further, searching the entire search space unrestrictedly. By\\ncombining GPU-based parallel computing and dual-step optimization, our approach\\nhas successfully identified new best-known binary sequences for all lengths\\nranging from 450 to 527, with the exception of length 518, where the previous\\nbest-known value was matched with a different sequence. This hybrid method\\nsignificantly outperforms traditional exhaustive and stochastic search methods,\\noffering an efficient solution for finding long sequences with good merit\\nfactors.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

寻找非周期性低自相关二进制序列(LABS)是一个巨大的计算挑战,尤其是当序列长度增加时。这类序列在通信工程、物理、化学和密码学中有着重要的应用。第一步采用并行算法,利用偏斜对称性和限制类来生成优点因子高于定义阈值的候选序列。第二步使用优先队列算法进一步完善这些候选序列,不受限制地搜索整个搜索空间。通过结合基于 GPU 的并行计算和两步优化,我们的方法成功地识别出了从 450 到 527 的所有长度范围内的新的已知二进制序列,但长度为 518 的序列除外,因为在该长度范围内,以前的已知值与不同的序列相匹配。这种混合方法明显优于传统的穷举搜索和随机搜索方法,为寻找具有良好优点因子的长序列提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Step Optimization for Binary Sequences with High Merit Factors
The problem of finding aperiodic low auto-correlation binary sequences (LABS) presents a significant computational challenge, particularly as the sequence length increases. Such sequences have important applications in communication engineering, physics, chemistry, and cryptography. This paper introduces a novel dual-step algorithm for long binary sequences with high merit factors. The first step employs a parallel algorithm utilizing skew-symmetry and restriction classes to generate sequence candidates with merit factors above a predefined threshold. The second step uses a priority queue algorithm to refine these candidates further, searching the entire search space unrestrictedly. By combining GPU-based parallel computing and dual-step optimization, our approach has successfully identified new best-known binary sequences for all lengths ranging from 450 to 527, with the exception of length 518, where the previous best-known value was matched with a different sequence. This hybrid method significantly outperforms traditional exhaustive and stochastic search methods, offering an efficient solution for finding long sequences with good merit factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信