{"title":"分析对话结构对预测网上劝说性评论的影响","authors":"Nicola Capuano, Marco Meyer, Francesco David Nota","doi":"10.1007/s12652-024-04841-8","DOIUrl":null,"url":null,"abstract":"<p>The topic of persuasion in online conversations has social, political and security implications; as a consequence, the problem of predicting persuasive comments in online discussions is receiving increasing attention in the literature. Following recent advancements in graph neural networks, we analyze the impact of conversation structure in predicting persuasive comments in online discussions. We evaluate the performance of artificial intelligence models receiving as input graphs constructed on the top of online conversations sourced from the “Change My View” Reddit channel. We experiment with different graph architectures and compare the performance on graph neural networks, as structure-based models, and dense neural networks as baseline models. Experiments are conducted on two tasks: (1) persuasive comment detection, aiming to predict which comments are persuasive, and (2) influence prediction, aiming to predict which users are persuasive. The experimental results show that the role of the conversation structure in predicting persuasiveness is strongly dependent on its graph representation given as input to the graph neural network. In particular, a graph structure linking only comments belonging to the same speaker in the conversation achieves the best performance in both tasks. This structure outperforms both the baseline model, which does not consider any structural information, and structures linking different speakers’ comments with each other. Specifically, the F1 score of the best performing model is 0.58, which represents an improvement of 5.45% over the baseline model (F1 score of 0.55) and 7.41% over the model linking different speakers’ comments (F1 score of 0.54).</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the impact of conversation structure on predicting persuasive comments online\",\"authors\":\"Nicola Capuano, Marco Meyer, Francesco David Nota\",\"doi\":\"10.1007/s12652-024-04841-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The topic of persuasion in online conversations has social, political and security implications; as a consequence, the problem of predicting persuasive comments in online discussions is receiving increasing attention in the literature. Following recent advancements in graph neural networks, we analyze the impact of conversation structure in predicting persuasive comments in online discussions. We evaluate the performance of artificial intelligence models receiving as input graphs constructed on the top of online conversations sourced from the “Change My View” Reddit channel. We experiment with different graph architectures and compare the performance on graph neural networks, as structure-based models, and dense neural networks as baseline models. Experiments are conducted on two tasks: (1) persuasive comment detection, aiming to predict which comments are persuasive, and (2) influence prediction, aiming to predict which users are persuasive. The experimental results show that the role of the conversation structure in predicting persuasiveness is strongly dependent on its graph representation given as input to the graph neural network. In particular, a graph structure linking only comments belonging to the same speaker in the conversation achieves the best performance in both tasks. This structure outperforms both the baseline model, which does not consider any structural information, and structures linking different speakers’ comments with each other. Specifically, the F1 score of the best performing model is 0.58, which represents an improvement of 5.45% over the baseline model (F1 score of 0.55) and 7.41% over the model linking different speakers’ comments (F1 score of 0.54).</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04841-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04841-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Analyzing the impact of conversation structure on predicting persuasive comments online
The topic of persuasion in online conversations has social, political and security implications; as a consequence, the problem of predicting persuasive comments in online discussions is receiving increasing attention in the literature. Following recent advancements in graph neural networks, we analyze the impact of conversation structure in predicting persuasive comments in online discussions. We evaluate the performance of artificial intelligence models receiving as input graphs constructed on the top of online conversations sourced from the “Change My View” Reddit channel. We experiment with different graph architectures and compare the performance on graph neural networks, as structure-based models, and dense neural networks as baseline models. Experiments are conducted on two tasks: (1) persuasive comment detection, aiming to predict which comments are persuasive, and (2) influence prediction, aiming to predict which users are persuasive. The experimental results show that the role of the conversation structure in predicting persuasiveness is strongly dependent on its graph representation given as input to the graph neural network. In particular, a graph structure linking only comments belonging to the same speaker in the conversation achieves the best performance in both tasks. This structure outperforms both the baseline model, which does not consider any structural information, and structures linking different speakers’ comments with each other. Specifically, the F1 score of the best performing model is 0.58, which represents an improvement of 5.45% over the baseline model (F1 score of 0.55) and 7.41% over the model linking different speakers’ comments (F1 score of 0.54).
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators