常量逼近无循环图上的不相交路径是 W[1]-hard

Michał Włodarczyk
{"title":"常量逼近无循环图上的不相交路径是 W[1]-hard","authors":"Michał Włodarczyk","doi":"arxiv-2409.03596","DOIUrl":null,"url":null,"abstract":"In the Disjoint Paths problem, one is given a graph with a set of $k$ vertex\npairs $(s_i,t_i)$ and the task is to connect each $s_i$ to $t_i$ with a path,\nso that the $k$ paths are pairwise disjoint. In the optimization variant, Max\nDisjoint Paths, the goal is to maximize the number of vertex pairs to be\nconnected. We study this problem on acyclic directed graphs, where Disjoint\nPaths is known to be W[1]-hard when parameterized by $k$. We show that in this\nsetting Max Disjoint Paths is W[1]-hard to $c$-approximate for any constant\n$c$. To the best of our knowledge, this is the first non-trivial result\nregarding the parameterized approximation for Max Disjoint Paths with respect\nto the natural parameter $k$. Our proof is based on an elementary\nself-reduction that is guided by a certain combinatorial object constructed by\nthe probabilistic method.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant Approximating Disjoint Paths on Acyclic Digraphs is W[1]-hard\",\"authors\":\"Michał Włodarczyk\",\"doi\":\"arxiv-2409.03596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Disjoint Paths problem, one is given a graph with a set of $k$ vertex\\npairs $(s_i,t_i)$ and the task is to connect each $s_i$ to $t_i$ with a path,\\nso that the $k$ paths are pairwise disjoint. In the optimization variant, Max\\nDisjoint Paths, the goal is to maximize the number of vertex pairs to be\\nconnected. We study this problem on acyclic directed graphs, where Disjoint\\nPaths is known to be W[1]-hard when parameterized by $k$. We show that in this\\nsetting Max Disjoint Paths is W[1]-hard to $c$-approximate for any constant\\n$c$. To the best of our knowledge, this is the first non-trivial result\\nregarding the parameterized approximation for Max Disjoint Paths with respect\\nto the natural parameter $k$. Our proof is based on an elementary\\nself-reduction that is guided by a certain combinatorial object constructed by\\nthe probabilistic method.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 "互不相交路径 "问题中,给定的图形有一组 $k$ 的顶点对 $(s_i,t_i)$,任务是用一条路径连接每个 $s_i$ 和 $t_i$,使 $k$ 路径成对互不相交。在优化变体 MaxDisjoint Paths 中,目标是最大限度地增加要连接的顶点对的数量。我们在非循环有向图上研究这个问题,已知当以 $k$ 为参数时,DisjointPaths 是 W[1]-hard 的。我们的研究表明,在这种情况下,对于任意常数$c$,Max Disjoint Paths 是 W[1]-hard to $c$-approximate 的。据我们所知,这是第一个关于自然参数 $k$ 的最大无相邻路径参数化近似的非微观结果。我们的证明基于一个基本的自我还原,它以概率方法构造的某个组合对象为指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant Approximating Disjoint Paths on Acyclic Digraphs is W[1]-hard
In the Disjoint Paths problem, one is given a graph with a set of $k$ vertex pairs $(s_i,t_i)$ and the task is to connect each $s_i$ to $t_i$ with a path, so that the $k$ paths are pairwise disjoint. In the optimization variant, Max Disjoint Paths, the goal is to maximize the number of vertex pairs to be connected. We study this problem on acyclic directed graphs, where Disjoint Paths is known to be W[1]-hard when parameterized by $k$. We show that in this setting Max Disjoint Paths is W[1]-hard to $c$-approximate for any constant $c$. To the best of our knowledge, this is the first non-trivial result regarding the parameterized approximation for Max Disjoint Paths with respect to the natural parameter $k$. Our proof is based on an elementary self-reduction that is guided by a certain combinatorial object constructed by the probabilistic method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信