Xiangming Zheng, Huawang Qin, Haoran Chen, Weixi Wang, Piao Shi
{"title":"基于 ConvLSTM-UNet 深度时空网络的降水预报","authors":"Xiangming Zheng, Huawang Qin, Haoran Chen, Weixi Wang, Piao Shi","doi":"10.1117/1.jei.33.4.043053","DOIUrl":null,"url":null,"abstract":"The primary objective of precipitation forecasting is to accurately predict short-term precipitation at a high resolution within a specific area, which is a significant and intricate challenge. Traditional models often struggle to capture the multidimensional characteristics of precipitation clouds in both time and space, leading to imprecise predictions due to their expansion, dissipation, and deformation. Recognizing this limitation, we introduce ConvLSTM-UNet, which leverages spatiotemporal feature extraction from meteorological images. ConvLSTM-UNet is an efficient convolutional neural network (CNN) based on the classical UNet architecture, equipped with ConvLSTM and improved deep separable convolutions. We evaluate our approach on the generic time series dataset Moving MNIST and the regional precipitation dataset of the Netherlands. The experimental results show that the proposed method has better spatiotemporal prediction skills than other tested models, and the mean squared error is reduced by more than 7.2%. In addition, the visualization results of the precipitation forecast show that the approach has a better ability to capture heavy precipitation, and the texture details of the precipitation forecast are closer to the ground truth.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation nowcasting based on ConvLSTM-UNet deep spatiotemporal network\",\"authors\":\"Xiangming Zheng, Huawang Qin, Haoran Chen, Weixi Wang, Piao Shi\",\"doi\":\"10.1117/1.jei.33.4.043053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of precipitation forecasting is to accurately predict short-term precipitation at a high resolution within a specific area, which is a significant and intricate challenge. Traditional models often struggle to capture the multidimensional characteristics of precipitation clouds in both time and space, leading to imprecise predictions due to their expansion, dissipation, and deformation. Recognizing this limitation, we introduce ConvLSTM-UNet, which leverages spatiotemporal feature extraction from meteorological images. ConvLSTM-UNet is an efficient convolutional neural network (CNN) based on the classical UNet architecture, equipped with ConvLSTM and improved deep separable convolutions. We evaluate our approach on the generic time series dataset Moving MNIST and the regional precipitation dataset of the Netherlands. The experimental results show that the proposed method has better spatiotemporal prediction skills than other tested models, and the mean squared error is reduced by more than 7.2%. In addition, the visualization results of the precipitation forecast show that the approach has a better ability to capture heavy precipitation, and the texture details of the precipitation forecast are closer to the ground truth.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043053\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043053","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Precipitation nowcasting based on ConvLSTM-UNet deep spatiotemporal network
The primary objective of precipitation forecasting is to accurately predict short-term precipitation at a high resolution within a specific area, which is a significant and intricate challenge. Traditional models often struggle to capture the multidimensional characteristics of precipitation clouds in both time and space, leading to imprecise predictions due to their expansion, dissipation, and deformation. Recognizing this limitation, we introduce ConvLSTM-UNet, which leverages spatiotemporal feature extraction from meteorological images. ConvLSTM-UNet is an efficient convolutional neural network (CNN) based on the classical UNet architecture, equipped with ConvLSTM and improved deep separable convolutions. We evaluate our approach on the generic time series dataset Moving MNIST and the regional precipitation dataset of the Netherlands. The experimental results show that the proposed method has better spatiotemporal prediction skills than other tested models, and the mean squared error is reduced by more than 7.2%. In addition, the visualization results of the precipitation forecast show that the approach has a better ability to capture heavy precipitation, and the texture details of the precipitation forecast are closer to the ground truth.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.