{"title":"嵌入曲面的图形的科林-德-威尔第埃参数[数学]的线性约束","authors":"Camille Lanuel, Francis Lazarus, Rudi Pendavingh","doi":"10.1137/23m1623628","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2289-2296, September 2024. <br/> Abstract. We provide a combinatorial and self-contained proof of a result following from G. Besson [Ann. Inst. Fourier, 30 (1980), pp. 109–128] and Y. Colin de Verdière [Ann. Sci. Éc. Norm. Supér., 20 (1987), pp. 599–615] that for all graphs [math] embedded on a surface [math], the Colin de Verdière parameter [math] is upper bounded by [math].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Linear Bound for the Colin de Verdière Parameter [math] for Graphs Embedded on Surfaces\",\"authors\":\"Camille Lanuel, Francis Lazarus, Rudi Pendavingh\",\"doi\":\"10.1137/23m1623628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2289-2296, September 2024. <br/> Abstract. We provide a combinatorial and self-contained proof of a result following from G. Besson [Ann. Inst. Fourier, 30 (1980), pp. 109–128] and Y. Colin de Verdière [Ann. Sci. Éc. Norm. Supér., 20 (1987), pp. 599–615] that for all graphs [math] embedded on a surface [math], the Colin de Verdière parameter [math] is upper bounded by [math].\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1623628\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1623628","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
SIAM 离散数学杂志》,第 38 卷第 3 期,第 2289-2296 页,2024 年 9 月。 摘要。我们对贝松 (G. Besson) [Ann. Inst. Fourier, 30 (1980), pp.
A Linear Bound for the Colin de Verdière Parameter [math] for Graphs Embedded on Surfaces
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2289-2296, September 2024. Abstract. We provide a combinatorial and self-contained proof of a result following from G. Besson [Ann. Inst. Fourier, 30 (1980), pp. 109–128] and Y. Colin de Verdière [Ann. Sci. Éc. Norm. Supér., 20 (1987), pp. 599–615] that for all graphs [math] embedded on a surface [math], the Colin de Verdière parameter [math] is upper bounded by [math].
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.